
 2011.X.27

Telefunken RT200

Device Type

Digital Synthesizer Tuner

Start of Sale

1981

Original Price

DEM 799,-

General Description

The medium-sized tuner of the Silver Series includes a feature even not present in the larger RT300: a

digital timer/clock, allowing to turn the tuner plus two other devices on and off at preselected times. A

single point of time and a daily-repeating time may be programmed. The tuner is never really off: the

power switch is in reality only a key that instructs the microprocessor to turn the relay for the outlets and

the tuner section off; the display then switches to a 24-hour time display. Since there are only five digits

available, the time display doesn't include the seconds.

In contrast to the RT300 and MT1, the other digital tuners in the Silver Line, the RT200 does not allow

entering a frequeny via the numeric keys. Note that '16 program memory places' means 8*FM and 8*AM;

you can't have more places in one range and less in the other!

Features

UKW/MW, 16 program memory places, manual and automatic station search, PLL tuning system, LED

signal strength indicator, exact tuning indicator, digital timer clock, mono switch, AFC (switchable)

Connectors

AF Output (DIN and Cinch), Antenna (75 Ohms asymmetric 240 Ohms symmetric AM/FM), 2 switched

outlets for timer operation

Technical Data

(taken from the user's manual and the service manual; I took the values from the service manual in case of

contradictions)

FM Receiver

Wave Band: 87.5 - 108 MHz

Circuits: 11, 4 adjustable

Sensitivity: 0.8 µV / 2.6 µV Mono/Stereo

at 26 dB at 75 Ohms

1.6 µV / 5.2 µV Mono/Stereo

at 26 dB at 300 Ohms

Limit Range: <1.0 µV for -3 dB at 75 Ohms

Intermediate Frequency: 10.7 MHz

IF Bandwidth: 160 kHz

Selection: 65 dB (2 signal method)

Mirror Selection: >=70 dB

Capture Ratio: <1 dB

Phase Suppression: >55 dB

Carrier Signal Suppr.: >70 dB

Frequency Response: 10 Hz - 16.0 kHz

Distortion Factor: <0.5 % stereo

<0.3 % mono

at 1 kHz and 40 kHz deviation

Cross Talk Dampening: >38 dB at 1 kHz

>30 dB at 12.5 kHz

Voltage Ratio: >62 dB stereo (eff)

>65 dB mono

S/N Ratio: >64 dB stereo

>67 dB mono

Range of Strength Display: 1 µV - 2 mV

Accuracy of Standards: 0 digit for station frequency in 50 kHz steps

AM Receiver

Wave Band: MW 522 - 1611 kHz

Sensitivity: 9 µV at 600 kHz

(at 1 kHz 30% Modulation)

Circuits: 6, 2 adjustable

Intermediate Frequency: 450 kHz

IF Bandwidth: 4.8 kHz

Voltage Ratio: 36 dB at U = 1 mV,

Accuracy of Standards: +/- 1 digit

Range of Strength Display: 8 µV - 5 mV

Frequency step: 9 kHz

General

Components: 13 Integrated Circuits

42 Transistors

43 Diodes, 20 LEDs

Mains Connection: 220 V

Fuses: 1 x T 2.5 A (primary)

1 x T 630 mA

1 x T 100 mA

Dimensions: 435 x 56 x 250 mm

Weight: ~ 4.5 kg

Common Failures

Leaked Accumulator

The RT200 contains a 4.8V NiCd accumulator pack. This is needed to keep the processor and the clock

running while the device is disconnected from the mains supply (as I noted above, the microprocessor and

its supply is still on when you turn the tuner off). During normal operation, the accumulator will be

recharged. However, there is no protection against driving the accumulator into deep discharge when the

tuner is disconnected from power for a longer period of time. Similar to the accumulators on older PC

mainboards, this will (1) destroy the NiCas and (2) make them leak! If you see a pack with the white,

crystal-looking electrolyte leaked out, immediately replace it, since the acid can also destroy traces on the

PCB. The cells used in the pack have a non-standard size. Simply use a pack of four standard AA/R6 cells

and connect it via some inches of wire to the PCB. Even the smallest AA cells available these days have

four times the capacity of the original cells, and there is plenty of space in the case to install the new pack

somewhere.

Out of Tune

The second next common failure is a synthesizer crystal out of tune. This becomes notable by the tuner's

exact-tuning display: though the correct frequency for a certain station is set, the exact-tuning indicator

does not 'show green'. Typically, it will claim a mistune towards lower frequencies. Since the tuning

principle is a PLL synthesizer with a closed loop, aging of analog components like the varicaps or OpAmps

is out of question, the synthesizer's reference clock must be wrong - just by a couple ppm, but enough...

You may try swapping the crystal, but since you will need to readjust the oscillator anyway, you may try to

get the old one back to the correct frequency: the crystal is stabilized with two small ceramic capacitors.

Their purpose is to assure a correct start and a stable oscillation, and they also have the property of slightly

reducing the crystals resonance frequency. They are located between the crystals's contacts and ground. Try

reducing their values (one of them is adjustable, but that is usually not enough) or unsolder them. For

example, I had an RT200 that came 'back into tune' after I removed C272...

Linked to the out-of-tune phenomenon is the tuner's incaopability to reliably receive in stereo; an RT200

going mono in the music's rhythm is not uncommon ;-)

Failed +5V Supply

In case the tuner starts acting 'funny' or the display stays dark altogether, it's worth to check the +5V supply

of the microprocessor. If it is more than half a volt too low, try to swap the regulating transistor for the +5V

supply, T236. Seems this transistor is slightly underdimensioned and may get 'cooked' over time. I usually

replace it with a BD135 plus a small heatsink.

Broken Processor

Another failure I had so far was a broken microprocessor (which is a complete project on its own, see

below), but this is surely not a standard failure and more due to incompetent handling/repair of the previous

owner...

Spare Part Numbers

(taken from Telefunken's 1981-1991 Service Handbook and the Service Manual)

ICs, Transistors,

Diodes

IC201 IC TA7060 AP 339 575 227

IC202 IC HA12412 339 575 228

IC203 IC LB1450 339 575 278

IC204 IC LA1245 339 575 285

IC205 IC LB1426 339 575 279

IC206 IC TCA4500A 339 575 284

IC207 IC NJM4558D 339 575 087

IC208 IC MN6147 339 575 281

IC209 IC MN1455LF (IC209) 339 575 280

IC210 IC MC1741 (IC210) 339 575 123

IC211 IC MB74LS42 (IC211) 339 575 282

IC212 IC NJM7812A (IC212) 339 575 283

transistor BF451 339 556 289

transistor BC639 309 001 313

T204-207,209,224,228, transistor 2SC1815Y 339 556 292

229,231,233,234,237,

238

T201 transistor 2SC380 339 556 052

T202 transistor 2SK212D 339 556 453

T203 transistor 2SK212C 339 556 454

T208-225,210-223,227, transistor 2SA1015 339 556 216

230,232

T235 transistor 2SA1020 339 556 456

T236 transistor 2SD592 339 556 455

T101 transistor 3SK45B 339 556 456

T102,104 transistor 2SC535B 339 005 901

T103 transistor 2SC461B 339 005 925

D201-204,207,208 diode 1S446 309 327 925

D205,206 diode KV1225 339 529 322

D209-214,217,220-223, diode 1S1555 339 529 017

304,305,501-504,506)

D215,216,218,224,225, diode SR1K 339 529 101

229,230,303

D219 diode KB262 339 529 092

D226 diode DBA10B 339 529 368

D227 diode 05Z7,5X 339 529 317

D228 diode 05Z6,8Z 339 529 318

D301,302 diode 05Z16X 339 529 319

D101-104 diode 1SV53F2 339 529 314

D105 diode 1S2687C 339 529 315

D520,522,523 LED SR531D 339 529 323

D521 LED SG231D 339 529 320

D524-528 LED LN05202P 339 529 321

D503 LED SLP135B 339 529 324

rectifier 339 520 051

Filters

FL201,202 low-pass filter 339 368 014

CF201 ceramic filter 10.7MHz 339 367 116

CF202 ceramic filter 10.7MHz 339 368 016

CF204,205 ceramic filter 339 367 132

L201 coil 10.7MHz (L201) 339 347 039

L202 lowpass filter 195 kHz 339 367 117

L203 choke coil 2.2µH 339 348 655

L204 coil 3.3mH 339 347 045

choke coil 220µH 339 347 038

L206 antenna coil 339 347 139

L207 oscillator coil 100µH 339 347 138

L208 coil 339 367 114

L209 coil 339 367 115

L210,211 choke coil 39µH 339 347 040

symmetrical transformer 339 312 114

L101 coil 339 347 134

L102,104 coil 339 347 135

L105 coil 339 347 136

L108 oscillator coil 339 347 143

L106 coil 339 347 137

L107 coil 339 367 113

Misc. Electrical Parts

accumulator 4.8V 339 283 128

key 339 442 121

mains button w. rod 339 202 109

push button 339 222 132

push button 339 222 124

push button, 2 fold 339 222 125

push button, 3 fold 339 222 126

tuning knob 339 222 123

J201 antenna socket 309 670 928

J202 DIN socket, 5 poles 339 540 114

J203 cinch socket 339 540 146

FLU201 digital display 339 335 108

FU201 fuse T2.5A 309 627 916

FU202,203 fuse T400mA 339 572 004

FU204 fuse T100mA 339 570 023

R220,267 var. res. 10KOhm 339 508 651

R246,279,286 var. res. 20KOhm 339 508 653

R355 var. res. 5KOhm 339 502 015

RY201 relay 339 360 108

S201 push button assembly 339 442 119

XTAL201 crystal 4.5MHz 339 349 154

battery 4.8V/150mAh 339 168 006

FM mixer board 339 337 145

C101,109,112 trimmer 339 510 061

C124 trimmer 339 510 062

station buttons board, cpl. 339 337 137

tact switch w/o diode 339 442 020

tact switch w. diode 339 442 018

scanning board, cpl. 339 442 130

key assembly for it 339 442 120

mains socket 339 480 107

mains switch 339 442 121

mains transformer 339 312 112

mains cable 339 480 106

Misc. Mechanical Parts

cable binder 339 911 713

front plate, cpl. 339 132 128

side part f. front plate 339 232 125

frame f. tuning knob 339 222 145

button frame 339 222 144

buttons guiding, 8 fold 339 222 143

indicator window 339 272 128

display frame 339 337 142

push button holder 339 917 111

push button spring 339 917 110

housing, upper part 339 112 107

housing, rear panel 339 137 110

foot 339 062 112

Available Documents

 Manual

 Service Manual/Circuit Diagram

Goodies

xxx

Replacing The Broken Microprocessor in a Telefunken RT200

Introduction

NOTE: This is a project for people who are absolutely crazy, like me. It took me altogether more than two

months of work to do this project, not counting the hassle to find appropriate information (and realizing

that I had to find out things myself). This report mostly has documentational purposes and there is probably

noone who has an RT200 with the same problem and can use this text as a 1:1 guide. To do something like

this, you need to have experience in reverse engineering devices, understanding both analog and digital

electronics, building hardware, and programming embedded controllers. If you try something similar along

the lines of this project, you are absolutely on your own and I might not be able to help you out. Especially,

you are yourself responsible for anything you break. So for the moment, lean back, read, enjoy, and see if

you can reuse some aspects for your projects.

The root of this project is one of my collecting passions, Telefunken Hifi components built in the late

70s/early 80s. The RT200 is an FM/AM Tuner with a built-in timer clock, i.e. you may use it to switch

other devices on and off at preprogrammed times. Typically, those were the cassette deck and/or amplifier,

either to wake yourself in the morning with a sound quality better than any alarm radio clock or make

unattended recordings of radio programs.

I bought this RT200 for a few bucks at a flea market. Normally, there are few things in a synthesizer-based

digital tuner that can break: no movable parts except for the buttons, no lamps to burn out, just a NiCd

accumulator that may start to leak after a couple of years of operation. This RT200 however was perfectly

dead: plug it in and you won't get any reaction to key presses, just a few cryptic symbols on the display.

Checking the parts that are usually broken in such a case (power supply, clock generator) revealed nothing,

so it was clear that the central microprocessor chip had passed away. A truly uncommon event, so I guess

this happened due to incompetent repair attempts by the previous owner.

Contents

Some Reverse Engineering

Since the tuner's PCB is single-sided, it is principally possible to reverse-engineer the device by following

the traces, but at least in Germany, there is a much simpler way: go to www.schaltungsdienst.de, the web

page of the Lange circuit service in Berlin. This company offers a unique service: it archives schematics

and manuals for about any piece of audio/video equipment that was ever sold in Germany. Manufacturers

usually only have schematics for the newer devices, but Lange always gets a copy of the schematic and

stores it (hopefully) forever. It might even happen that when you ask a manuacturer for an older schematic,

they will automatically forward your request to Lange. Of course this service is not free; expect about

20..40 DEM plus shipping, depending on the number of pages to copy. I however think that this is well

worth the money, given the amount of time and nerves you save. Fortunately, this schematic already gives

the pin functions of the central microprocessor IC (a Matsushita MN4500 by the way, but that doesn't help

anyone...):

Pin

No.
Name Direction Function

1 Vss ---- Ground

2 LW Output goes high if switched to long wave AM (unused on the RT200)

3 MW Output goes high if switched to medium wave AM

4 FM Output goes high if switched to FM

5 OUTLED OUT Output goes high to turn tuner on

6 MUT OUT Output goes high to mute the AF output

7 LATCH OUT Output controls data transfer to the synthesizer chip

8 DIGIT OUT 5 Output row selectors for the display/keyboard matrix

9 DIGIT OUT 4 Output "

10 DIGIT OUT 3 Output "

11 DIGIT OUT 2 Output "

12 DIGIT OUT 1 Output "

13 DIGIT OUT 0 Output "

14 KEY IN 0 Input sense lines for the keyboard matrix

15 KEY IN 1 Input "

16 KEY IN 2 Input "

17 KEY IN 3 Input "

18 STAT DET Input
goes high when a signal of sufficient quality is received; needed for

auto scan

19 PWR DET Input issues a 'reset pulse' after the main supply comes back

20 KEY IN 4 Input sense lines for the keyboard matrix

21 KEY IN 5 Input "

22 BCDOUT 0 Output contols the decoder driving the station key LEDs

23 BCDOUT 1 Output "

24 BCDOUT 2 Output "

25 BCDOUT 3 Output "

26 TEST Input unused input

27 RESET Input low-active reset for the CPU

28 GND ---- Ground

29 LOCKDET IN Input
goes high when the synthesizer's PLL has synchronized to the

programmed frequency

http://www.schaltungsdienst.de/

30 CLOCKIN Input 250Hz clock from the syntesizer chip for the internal timer

31
SEGMENT OUT

0
Output segment data for the display + addr/data for the synthesizer chip

32
SEGMENT OUT

1
Output "

33
SEGMENT OUT

2
Output "

34
SEGMENT OUT

3
Output "

35
SEGMENT OUT

4
Output "

36
SEGMENT OUT

5
Output "

37
SEGMENT OUT

6
Output "

38
SEGMENT OUT

7
Output "

39 Vdd ---- 5V supply voltage

40 CPU CLOCKIN Input CPU clock input (562.5kHz)

Luckily, these are all only digital functions and the processors works with a standard 5V supply and TTL

levels, which simplifies the selection for a new processor:

Selecting a Microprocessor Platform

The microcontroller market offers lots of different families and variants of controllers. Some of them are

well-known and for general-purpose use, some of them were designed with a specific application in mind.

Since the synthesizer's PLL loop (see below) is completely done in the PLL chip, the main CPU's

functionality mainly consists of driving the multiplexed display, querying the keys, running the internal

clock for the timer and moving around some data - all not very advanced tasks even a 4-bit CPU could

handle (I guess the original MN4500 is a 4-bit CPU!), but most 4-bit-CPUs are not general purpose and

difficult to get or require expensive development systems, so let's settle with an 8-bit core. What other

things do we need?

 Must be available in CMOS, to allow operation from the built-in accumulator for power failures or

for times when the tuner is not connected to a mains supply.

 Must be able to run with the slow 562.5kHz clock supplied by the synthesizer chip. Of course we

could add an own oscillator, but I already said that there is no need for much compute power and

the low clock helps keeping the power consumption low.

 Must be available without problems. Not yet another obscure chip ;-)

 Development tools must be available for free at best...

Summing up, I settled with a CPU family that is the most widely used family of 8-bit controllers: The 8051

family. Originally introduced by Intel, 8051 derivatives are available from more than a dozen of

manufacturers. The two 'standard' ROMless components 8031 and 8032 are available from probably more

than 10 different manufacturers. I finally settled for the 80C32, the variant with more internal RAM

(needed for the stations' frequency storage) and a third timer (not needed here). By coincidence, I got an

TS80C32X2 from Temic, formerly Telefunken Microelectronics. It has the nice capability of running in X2

mode, i.e. an internal frequency divider is turned off and the device runs at double speed with the same

external clock. A very nice feature, especially considering the low external clock frequency.

The other stuff around the CPU is pretty basic: an address latch to demultiplex address and data lines, an

EPROM for the code (the C32's internal RAM of 256 bytes is sufficient for this task), and some latches and

bus drivers for additional parallel I/O: since the external memory interface eats a lot of I/O lines, an I/O

expansion is necessary in some way. I could have used one of the more modern x51 variants with built-in

flash EPROM and thereby get most of the processor's pins as I/O, but as I already mentioned, I have a

strong preference for components that are not single-sourced.

The whole circuitry is built on a prototype card and wired with thin isolated copper wires, a popular

method for prototypes. Needs a bit patience and requires accuracy...the connection to the tuner's mainboard

is done via a ribbon cable with a crimped plug on one end and an IC socket on the mainboard; of course, I

had to unsolder the broken processor and replace it with a socket. The DIL connector is in my case a

simple IC socket with the cable soldered onto it wire by wire; there are however also crimpable connectors

available for this end.

Basic Layout of the Software

As you may imagine, it is by far too complex to explain the firmware on a line-by-line basis at this place;

I'm also not going to explain the basics of the 80C32's architecture at this place - there's plenty of literature

available in the Internet about that. I will therefore describe the basic building blocks and line out how they

work together:

Initialization

Of course, the first step after a power-on or a reset is the initialization. The interrupt-driven background

processes have to be initialized, and some global memory cells are resetted to meaningful defaults.

Interrupt Routines

There are two interrupt-driven background processes that run on the CPU. At least on a standard C32

without X2 mode, they consume about 70% of the CPU time, which is no miracle given the low clock

frequency. The remainder is however still fully sufficient for our purposes.

The first process runs at about 400 interrupts per second and is used to drive the flourescent display and

read the keyboard matrix. As with most consumer electronics, the RT200's display is a 'dumb' display that

does not the refresh by itself, so the processor has to do the multiplexing itself. It works in the following

way: Initially, the CPU outputs the data for the leftmost digit to the SEGMENT OUT pins and pulls the

DIGIT OUT 0 line low while DIGIT OUT 1..4 remain high; this way, the contents of the leftmost digit are

displayed at the correct place. In the next cycle (==interrupt), the first digit is turned off, the data for the

second digit outputted, and the second digit is turned on. This process continues until the last digit is done,

and we jump back to the first digit. So at any point of time, only one digit is on, but if this done fast

enough, you get the impression of a still display. Similar to a computer monitor, about 60..70 complete

cycles are needed per second for a flicker-free display, which results in the interrupt frequency mentioned

above for 6 digits.

The other regular process is an interrupt service routine triggered by the precise 250Hz delivered by the

synthesizer chip. This clock is used to run a real-time clock needed for the time display and timer

functionality. For each interrupt, a byte in memory is incremented. As soon as its value reaches 250, the

seconds value is incremented. The rest should be clear ;-)

Since the keyboard matrix and display share their row select, is is only natuaral that the process mentioned

first also scans the keyboard. If one row of the matrix is pulled low, any key that is pressed and connected

to that row will generate a low level on the keyboard scan lines. The scanned values are stored in 6

consecutive memory cells, resulting in an image of the keyboard matrix stored in memory that gets updated

regularly. The x51 family allows to assign either a low or a high priority to each interrupt source. In our

case, the keyboard/display multiplexer gets a high priority, while the clock update process works with the

standard (low) priority. This is necessary to allow the multiplexer to interrupt a running clock service

routine. Especially when one or more counter(s) roll over, the clock update consumes more time and can

significantly delay the next multiplex cycle (don't forget we have a rather slow 8032!) and result in a

visible sort of 'flicker' resulting from some segments being turned on longer than others and therefore

seeming to be brighter.

Main Loop

The RT200 has a row of buttons that release each other and define the current 'operating mode' of the

tuner's 'user interface':

 Timer On: Normal tuner operation, timer function enabled;

 Timer Off: Normal tuner operation, timer function disabled;

 Timer Set: (Re)program timer settings;

 Timer Check: Recall/display timer settings;

 Timer Cancel: Erase timer settings;

 Clock Set: Set the timer's clock.

Once the system is initialized, the CPU contiuously queries which button is pressed and branches into the

appropriate sub-handler. Normally, this handler immediately returns to the main loop once the appropriate

actions are done, but it may decide to delay this return in case a multi-key entry (time or frequency) is

made. Of course, such an entry is immediately terminated in case the operation mode changes, so the key

input routines inside these handlers also regularly check the current mode.

The Timer Section

is not overly complex: The handler for the 'Timer On' and 'Timer Off' modes is basically the same. in

'Timer On' mode, this handler is additionally followed by another routine that compares the current time

against the preprogrammed timer values and issues the appropriate on/off sequences when necessary. This

check is only done if the seconds value is zero; i.e. there is no problem with the background interrupt

process updating the time in the same moment this routine runs. Problems only would occur if the

comparison took longer than a minute...

Programming the Synthesizer Chip

The probably hardest part was the programming of the synthesizer chip, the chip responsible for selecting

the frequency to be received. Its function is to generate a freely programmable frequency that is mixed with

the amplified and coarsely preselected signal from the antenna. When you mix two frequencies properly,

you get as a result two new signals with a frequency of the sum resp. difference of both frequencies. In our

case, only the difference is interesting. If we program the synthesizer with a frequency that is higher than

the signal to be received by a fixed amount, the difference remains constant and the following circuits need

not be tunable; they can be accurately adjusted for this frequency. This principle is called Superhet

Receiver in contrast to a Straight Receiver where all circuits have to be tuned synchronously to the

frequency of the station to be received. Though this is in theory doable, it becomes extremely difficult to

keep more than two variable circuits 'in tune'. Two circuits is however not enough for a good selection, so

practically all radio receivers, including the simplest pocket radios, are superhet-type receivers.

The synthesizer chip generates a variable frequency with a tunable oscillator whose frequency is divided

and compared to a given reference clock. The difference signal is fed back to the oscillator's tuning

circuitry. As soon as the oscillator is 'in tune' (i.e. the regulator doesn't have to correct any more), the

oscillator outputs a frequency that is the reference clock multiplied by the divisor. So if we make the

divisor programmable, we have an oscillator with a programmable frequency!

In case of the RT200, a Matsushita MN6147 is used that contains the reference oscillator, frequency

comparator/regulator, and the programmable divider. The oscillator is an LC-circuit inside the RF frontend

that contains a Varicap diode. A Varicap is a diode that operates in blocked direction and varies its

parasitic capacitance according to a DC voltage applied to it.

From the schematic, we get the MN6147's pinout:

Pin No. Name Direction Function

1 Vss ---- Ground

2 OSC OUT Output Goes high if PLL has locked

3 OSC1 ---- Connect to 4.5 MHz crystal

4 OSC2 ---- "

5 CLOCK1 Output 562.5 kHz clock for CPU

6 CLOCK2 Output 250 kHz clock for CPU timer

7 VCC CLOCK ---- +5V supply

8 PD OUT Output Output of Varicap voltage

(externally amplified with 741 OpAmp)

9 LATCH CLOCK Input control signal from CPU

10 DAIN 3 Input Data/Address input from CPU

11 DAIN 2 Input "

12 DAIN 1 Input "

13 DAIN 0 Input "

14 VCC ---- +5V supply

15 AM LOIN Input Input from AM oscillator

16 FM LOIN Input Input from FM oscillator

17 SW/MW Input Select short or medium AM wave band

(unused, tied low)

18 FM/AM Input Select AM or FM operation

Though this helps understanding the circuitry, it doesn't help us with out new firmware, since there is no

information about how to program the synthesizer to a certain frequency. After a couple of phone calls

with Panasonic/Matsushita Germany, it was clear that I would have had to contact the japanese mother

company to get this piece of information (the people I spoke to however were quite friendly and trying to

help me, I must add at this point!).

Since I also own a still working RT200, there was a simpler way of finding things out: take a working

sample, tap onto the data and clock lines, and see what is happening when the frequency changes. I was

able to use a digital logic analyzer from HP for this job:

Shown on the LA's display is the result of a single programming cycle. The synthesizer chip contains a

couple of registers, each 4 bits wide. With a low-to-high transition of the clock line, a certain register is

selected; with a high-to-low transition, data is written to the addressed register. So a single write operation

consists of the following steps:

 Apply register address to data lines

 Pull clock line high

 Apply register data to data lines

 Pull clock line low again

The frequency to be programmed (remember this is 10.7 MHz resp. 450 kHz higher than the frequency

ultimately to be tuned) is simply written in BCD code to the synthesizer's registers. Specifically:

 Write 0 to register 2

 For FM:

o Write 1 to register 1

o Write hundreds of MHz to register 3

o Write tens of MHz to register 4

o Write ones of MHz to register 5

o Write hundreds of kHz to register 6

o Write 2 to register 7 if +50 kHz, otherwise write 4

 For AM:

o Write 2 to register 1

o Divide frequency by 9

o Write hundreds of kHz to register 3

o Write tens of kHz to register 4

o Write ones of kHz to register 5

o Write 0 to register 6

o Write 0 to register 7

 Write 7 to register 8

Note that in AM mode, you can only tune in 9 kHz steps!

Adding a Remote Control Input

The larger brother of the RT200, the RT300, features a remote control input to control the tuner via the

infrared remote control receiver in the RP300 pre-amplifier. Now that we have a firmware we can extend

and modify easily, there is no reason not to add some nice features you had always been missing...

The RP300 contains a Siemens infrared receiver & decoder chip that outputs the code of the pressed button

as a 6-bit-code (all bits zero means that no button is pressed). For the 'less intelligent' devices like the

cassette deck or the record player, some logic decodes these codes into individual signal lines for the

controllable functions. The tuner in contrast directly gets the 6-bit-code and has to do the decoding itself.

The reason for this is simple: About 20 buttons of the remote control are assigned to the tuner, and you

only have 8 pins in the used DIN connectors. Of course this also saves I/O pins at the tuner's processor, and

what is more interesting: the tuner also can 'see' codes destined for other devices in the system and react on

them. For example, if you turn the system off via the remote control, the tuner can also turn itself off

automatically. And what is more interesting: The buttons on the RP300's front panel run via a virtual

remote control whose signal is merged with the IR receiver's output, the tuner also can notice when you

switch the signal source to 'Tuner' and turn itself on. Another goodie I added to display the selected signal

source on the tuner's display for a few seconds. Adding the remote control input was relatively simple: the

signal are fed into the system with an extended low-level keyboard scan routine. Whenever a higher-level

routine queries the keyboard, this routine first checks the remote control input for a non-zero code and

returns this code in case the code translates to a 'usable' button. Otherwise, the normal key matrix scan is

initiated.

Actual Implementation

Below is a photo about how I installed the board in the RT200.

There is space in abundance in the right half of the cabinet, enough to install a standard Eurocard-sized

prototype board (160x100mm). Since this was a singular project, I didn't feel the need for a real PCB (and

the circuitry underwent quite a couple of changes...). a 40-wire ribbon cable connects the board to the

socket of the old processor. I could have used one of these handy DIL connectors for the cable, but you

know, it was Saturday and all shops were closed...Due to the low clock frequency, such a long cable is not

a problem except for slight interferences during AM receival (who needs that in a Hifi tuner anyway...). All

connections, including power supply, are made via this ribbon cable. The only other connector is the

RP300 remote control input in the rear right corner.

Program Source

The program's assembler sources are available . To assemble them, you need my own cross assembler AS,

;***

; *

; RT200 Firmware *

; *

; Changes: *

; 2000-08-30 /AArnold - hour digit 3..9 immediately jumps to hours ones *

; - clear AM+FM after entering start time *

; 2000-09-04 /AArnold - begun decrementing frequency *

; 2000-09-05 /AArnold - begun programming synthesizer *

; 2000-09-10 /AArnold - tuning works :-) *

; 2000-09-11 /AArnold - added usage of program keys *

; 2000-09-12 /AArnold - autorepeat up/down *

; 2000-09-13 /AArnold - started digital frequency input *

; 2000-09-14 /AArnold - added search + PLL lock inputs *

; - mute during PLL adjustment *

; 2000-09-16 /AArnold - mute during freq. wrap *

; 2000-09-17 /AArnold - bail out during AM freq input,search *

; - symbolically calculate delays *

; 2000-09-22 /AArnold - turn off station LED before search *

; - switch to 256 Byte RAM *

; 2000-09-28 /AArnold - add remote control handling *

; 2000-09-30 /AArnold - remote control decoder *

; 2000-10-01 /AArnold - display other input sources *

; - remote ctrl off always turns off *

; 2000-10-03 /AArnold - added step functionality *

; 2000-10-07 /AArnold - only check timer once a minute *

; 2000-10-15 /AArnold - version 1.0 *

; 2000-11-12 /AArnold - do not overwrite band info when tuner is *

; already off *

; 2001-03-02 /AArnold - fix typos in clearing once on/off times (damn!) *

; add copyright string *

; version 1.1 *

; *

;***

 cpu 8052

temic equ 1

 include "stddef51.inc"

 include "bitfuncs.inc"

 if temic

ckcon equ 08fh

 endif

;---

; macros:

regbank macro no ; register selection

 if no & 1

 setb rs0

 elseif

 clr rs0

 endif

 if no & 2

 setb rs1

 elseif

 clr rs1

 endif

 endm

proc macro name ; procedure frame

 section name

 public name

name label $

 endm

endp macro

 endsection

 endm

ljnz macro dest

 jz skip

 ljmp dest

skip:

 endm

ljc macro dest

 jnc skip

 ljmp dest

skip:

 endm

;---

; constants

rawclk equ 562500 ; input clock to CPU (4.5 MHz / 8)

timeclk equ 250 ; TOD clock

timeperiod equ 1000/timeclk

digits equ 6 ; # of digits in display

delval function time,time/timeperiod

disprate equ 68 ; desired display refresh rate in Hz

 if temic

t0rate equ rawclk/6/digits/disprate ; -->timer 0 reload value

 else

t0rate equ rawclk/12/digits/disprate ; -->timer 0 reload value

 endif

 ; operation modes given by switches

 enum mode_cset,mode_check,mode_tset,mode_cancel,mode_on,mode_off

 enum reg0,reg1,reg2,reg3,reg4,reg5,reg6,reg7

KEY_UP equ 14 ; misc. keys

KEY_DOWN equ 15

KEY_AM equ 9 ; why this double-mapping???

KEY_FM equ 8

KEY_PHONO equ 10

KEY_AUX equ 11

KEY_TAPE equ 12

KEY_TUNER equ 13

KEY_REMOFF equ 16

KEY_STORE equ 17

KEY_FREQINP equ 18

KEY_OFF equ 19

KEY_STEP equ 20

KEY_NONE equ 0ffh

NUMPROGS equ 8 ; reduce to 4 for 8031

MIN_FM equ 0845h ; frequency ranges:

MIN_FM1 equ (MIN_FM|8000h)-1

MAX_FM equ 1130h

MAX_FM1 equ MAX_FM|8000h

DEF_FM equ 0875h

MIN_AM equ 0504h

MIN_AM1 equ 0495h

MAX_AM equ 1710h

MAX_AM1 equ 1719h

DEF_AM equ 0522h

;---

; data definitions

ON bit p1.7 ; control bits: turn device on

FM bit p1.6 ; switch AM prt on

AM bit p1.5 ; switch FM part on

MUTE bit p1.4 ; mute audio output

LATCHCLK bit p1.3 ; clock to synthesizer

LED bit p1.2 ; diagnostic LED

LOCK bit p1.1 ; PLL lock input

STATION_DET bit p1.0 ; station detection from strength indicator

PORT_AUX equ 0 ; 4-2-10 decoder

PORT_ROW equ 1 ; display+kbd row selection

PORT_COL equ 2 ; display data

PORT_KBD equ 0 ; keyboard sense

PORT_REM equ 1 ; remote control data

 segment data

 org 20h

dispdata: db digits dup (?) ; segment data is bit-addressable

__dig0 sfrb dispdata+0

STORE bit __dig0.2

MHZ bit __dig0.4

KHZ bit __dig0.7

__dig2 sfrb dispdata+2

dig2dot bit __dig2.0

__dig3 sfrb dispdata+3

dig3dot bit __dig3.0

auxdata: db ? ; data for LED 0..9 port

; things that need not be bit-addressable

clk_msec: db ? ; current time

clk_sec: db ?

clk_min: db ?

clk_hour: db ?

time_permon: db ?,? ; timer values

time_permoff: db ?,?

time_onceon: db ?,?

time_onceoff: db ?,?

prog_perm: db ? ; program to turn on for permanent timer

prog_once: db ? ; program to turn on for one-shot timer

; an FM program contains the frequency in BCD coding. Since the 100s position

; is only one bit wide, we use the upmost bit for the +50kHz step and the

; upmost nibble remains in the valid BCD range.

;

; for example, 94.80 is stored as 0948h, 100.55 is stored as 9005h

;

; an AM program also contains the frequency in BCD coding, it is just a bit

; simpler since the 4-digit kHz value perfectly fits onto 2 bytes :-)

;

; for example, 522 is stored as 0522h, 1611 is stored as 1611h

am_progs: db NUMPROGS dup (2 dup (?)) ; stored programs

fm_progs: db NUMPROGS dup (2 dup (?))

am_prog: db 2 dup (?) ; current programs

fm_prog: db 2 dup (?)

currband: db ? ; AM/FM selected ?

keydata: db digits dup (?) ; input from keyboard matrix

lastkey: db ? ; last key read

firstdel: db ?

stack: org 0d0h ; reserve 48 bytes of stack

 db 30h dup (?)

;---

; reset/interrupt vectors

 segment code

 org 0 ; reset entry

start: ljmp resinit

 org 3 ; IE0 entry (250 Hz signal)

 ljmp clkserve

 org 0bh ; TF0 entry (display multiplexer)

 ljmp dispmux

;---

; store date & time here for identification

 org 20h

 db "RT200 Firmware (C) 2001 Alfred Arnold"

 db " Build Date - Time : ",date," - ",time

;---

; since we want the copyright info in plain text, we have to redefine the

; character set afterwards!

 charset 'E',10 ; shrunk charset

 charset 'r',11

 charset 'o',12

 charset 'n',13

 charset 'S',14

 charset 'y',15

 charset 'C',16

 charset 'A',17

 charset 'P',18

 charset 'h',19

 charset 'U',20

 charset 'X',21

;---

; reset initialization

resinit: mov sp,#stack ; set start of stack

 setb ON ; turn tuner off

 setb MUTE

 clr AM

 clr FM

 clr LATCHCLK

 setb LED

 if temic ; turn on TEMIC X2 mode

 mov ckcon,#1

 endif

 regbank 1 ; preset variables for dispmux handler:

 mov r2,#1 ; row shifter

 mov r1,#dispdata ; data pointer displ-matrix

 mov r0,#keydata ; data pointer kbd-matrix

 regbank 0

 setb it0 ; IE0 is level-triggered

 setb ex0 ; enable external interrupt 0

 clr px0 ; 250 Hz interrupt has lower priority

 mov tmod,#32h ; T1 stopped, T0 in mode 2, no gate

 mov th0,#(256-t0rate) ; set display mux interrupt rate

 setb tr0 ; turn or timer 0

 setb et0 ; interrupts on for timer 0

 setb pt0 ; high priority

 clr a ; preinit clock

 mov clk_msec,a

 mov clk_sec,a

 mov clk_min,a

 mov clk_hour,a

 mov r0,#4 ; preinit timer values to invalid times

 mov r1,#time_permon

initimer: mov @r1,a

 inc r1

 setb acc.7 ; (meaning bit 7 in hours is set)

 mov @r1,a

 clr acc.7

 inc r1

 djnz r0,initimer

 mov a,#0fh ; preinit timer programs

 mov prog_perm,a

 mov prog_once,a

 mov fm_prog,#lo(DEF_FM) ; preinit FM programs to 87.5 MHz

 mov fm_prog+1,#hi(DEF_FM)

 mov r0,#NUMPROGS

 mov r1,#fm_progs

initfm: mov @r1,#lo(DEF_FM)

 inc r1

 mov @r1,#hi(DEF_FM)

 inc r1

 djnz r0,initfm

 mov am_prog,#lo(DEF_AM) ; preinit AM programs to 522 kHz

 mov am_prog+1,#hi(DEF_AM)

 mov r0,#NUMPROGS

 mov r1,#am_progs

initam: mov @r1,#lo(DEF_AM)

 inc r1

 mov @r1,#hi(DEF_AM)

 inc r1

 djnz r0,initam

 mov currband,#40h ; initially on FM

 mov r0,#dispdata ; init display segment+keyboard status

 mov r1,#keydata

 mov r2,#6

 clr a

iniloop: mov @r0,a

 mov @r1,a

 inc r0

 inc r1

 djnz r2,iniloop

 mov a,#15

 mov auxdata,a ; clear aux port

 mov lastkey,#KEY_NONE ; no key previously read

 setb ea ; enable interrupts

;--

; main loop

main:

 call getmode ; get operation mode

 cjne a,#mode_off,nooff

 call oper

 ljmp main

nooff: cjne a,#mode_on,noon

 call chktimer ; additionally check timer when 'on'

 call oper

 ljmp main

noon: cjne a,#mode_cset,nocset

 call cset

 ljmp main

nocset: cjne a,#mode_tset,notset

 call tset

 ljmp main

notset: cjne a,#mode_check,nocheck

 call check

 ljmp main

nocheck: cjne a,#mode_cancel,nocancel

 call cancel

 ljmp main

nocancel: call dummy

 ljmp main

;---

; normal operation mode: display clock/frequency, check timer, operate keys

 proc oper

 jnb ON,showfreq

 call dispclk ; off->display time of day

 sjmp keyin

showfreq: call dispfreq ; on->show frequency

keyin: mov b,#delval(800) ; standard timeout for first time

 call readkey ; input available?

 ljc terminate

 cjne a,#KEY_AM,no_am ; switch to AM ?

 jnb AM,do_am ; if AM is already selected,

 call freqinp_am ; then frequency input...

 ljc terminate

 setb MUTE ; ...and program if OK

 call setfreq

 ljmp terminate

do_am: call switchon_am

 ljmp terminate

no_am:

 cjne a,#KEY_FM,no_fm ; switch to FM ?

 jnb FM,do_fm ; if FM is already selected,

 call freqinp_fm ; then frequency input...

 ljc terminate

 setb MUTE ; ...and program if OK

 call setfreq

 ljmp terminate

do_fm: call switchon_fm

 ljmp terminate

no_fm:

 cjne a,#KEY_OFF,no_off ; switch on/off?

 jb ON,pwr_on ; depends on current state

 call switchoff ; switch off

 ljmp terminate

pwr_on: call switchon

 ljmp terminate

no_off:

 cjne a,#KEY_REMOFF,no_remoff ; switch off ?

 call switchoff

 ljmp terminate

no_remoff:

 cjne a,#KEY_TUNER,no_tuner ; switch on ?

 call switchon

 sjmp terminate

no_tuner:

 cjne a,#KEY_AUX,no_aux ; switch to aux ?

 mov dptr,#str_aux

 call write

 mov a,#delval(900)

 call delay

 sjmp terminate

no_aux:

 cjne a,#KEY_TAPE,no_tape ; switch to tape ?

 mov dptr,#str_tape

 call write

 mov a,#delval(900)

 call delay

 sjmp terminate

no_tape:

 cjne a,#KEY_PHONO,no_phono ; switch to phono ?

 mov dptr,#str_phono

 call write

 mov a,#delval(900)

 call delay

 sjmp terminate

no_phono:

 cjne a,#KEY_UP,no_up ; tune up ?

 jb ON,skip_up ; not if turned off

 call tuneup ; otherwise do it

skip_up: sjmp terminate

no_up:

 cjne a,#KEY_DOWN,no_down ; tune down ?

 jb ON,skip_down ; not if turned off

 call tunedown ; otherwise do it

skip_down: sjmp terminate

no_down:

 cjne a,#KEY_STORE,no_store ; store to program?

 jb ON,skip_store ; not if turned off

 call storeprg ; do it

skip_store: sjmp terminate

no_store:

 cjne a,#KEY_STEP,no_step ; step up a program ?

 mov a,auxdata ; get currently selected program

 anl a,#15 ; only bits 0..3 relevant

 jnb acc.3,step1 ; when >=8, no program was selected

 mov a,#7 ; in such case, start from beginning

step1: inc a ; go to next program

 anl a,#7 ; possibly wrap

 sjmp doprog ; rest like direct selection

no_step:

 call key2num ; check for numbers 0..9

 jc terminate ; no-->ignore key

 dec a ; number: ignore 0 at this point

 clr c ; program selection ?

 subb a,#NUMPROGS

 mov b.7,c

 clr c

 add a,#NUMPROGS ; restore key value

 jnb b.7,no_selprg ; when not in range...

doprog: mov b,currband

 jb b.5,sel_am ; select AM program ?

 call switchon_fm_prg ; select FM program

 sjmp terminate

sel_am: call switchon_am_prg ; select AM program

 sjmp terminate

no_selprg:

terminate: ret

 endp

;---

; additionally check timer in operation mode

 proc chktimer

 mov a,clk_sec ; only check when hh:mm has just changed,

 jz goon ; i.e. seconds are zero

 ret

goon:

 mov r0,clk_min ; first save time

 mov r1,clk_hour

 mov a,r0 ; repetitive turn on?

 cjne a,time_permon,no_permon

 mov a,r1

 cjne a,time_permon+1,no_permon

 mov a,prog_perm ; yes-->

 sjmp turnon

no_permon: mov a,r0 ; repetitive turn off?

 cjne a,time_permoff,no_permoff

 mov a,r1

 cjne a,time_permoff+1,no_permoff

 sjmp turnoff ; yes-->

no_permoff: mov a,r0 ; single turn on?

 cjne a,time_onceon,no_onceon

 mov a,r1

 cjne a,time_onceon+1,no_onceon

 mov time_onceon,#0 ; yes-->clear time

 mov time_onceon+1,#80h

 mov a,prog_once

 sjmp turnon

no_onceon: mov a,r0 ; single turn off?

 cjne a,time_onceoff,no_onceoff

 mov a,r1

 cjne a,time_onceoff+1,no_onceoff

 mov time_onceoff,#0 ; yes-->clear time

 mov time_onceoff+1,#80h

 sjmp turnoff

no_onceoff: ret ; end without hits...

turnon: mov c,acc.7 ; turn on: select range

 clr acc.7 ; remove range flags from program #

 clr acc.6

 jc turnon_fm

 call switchon_am_prg ; turn on AM program

 ret

turnon_fm: call switchon_fm_prg ; turn on FM program

 ret

turnoff: call switchoff ; turn device off

 ret

 endp

;---

; setting the clock:

 proc cset

 setb ON ; turn tuner off

 setb MUTE

 clr AM

 clr FM

 mov auxdata,#15 ; not needed here

 call readnum ; is a number available ?

 jc idle ; no --> display time

 mov r3,#mode_cset ; get rest of time

 call readtime

 jc idle ; success?

 mov clk_sec,#0 ; clear seconds (avoids rollovers while

writing m+h)

 mov clk_hour,r5 ; store hours

 mov clk_min,r4 ; store minutes

idle: call dispclk ; show (possibly new) time

terminate: ret

 endp

;---

; setting the timer:

 proc tset

 setb ON ; turn tuner off

 setb MUTE

 clr AM

 clr FM

 mov r2,#0 ; we start with the first value (perm on)

 mov a,r2 ; display this

 mov auxdata,a

 call clrdisp ; erase display

 mov dispdata+2,#1 ; show just a dot

loop: clr AM ; AM+FM LEDs are only on during

 clr FM ; time/prog entry

 call getmode ; are we still in timer setting mode ?

 xrl a,#mode_tset

 ljnz terminate ; no-->exit

 call readkey ; try to read a key

 jc loop ; none found -> back to beginning

 cjne a,#KEY_UP,noup ; step one setting further ?

 mov a,r2 ; yes->increment pointer

 inc a

stepdisp: anl a,#3

 mov r2,a

 mov auxdata,a ; and display it

 sjmp loop

noup: cjne a,#KEY_DOWN,nodown ; step one setting back ?

 mov a,r2 ; yes->decrement pointer

 dec a

 sjmp stepdisp ; rest as usual..

nodown: call key2num ; now check whether this is a number?

 jc loop ; if no, forget this keypress finally

 mov r3,#mode_tset ; read rest of time

 call readtime

 jc loop ; no success reading ?

 mov a,r2 ; is this a start time?

 jb acc.0,storetime ; yes: we have to read station#

 mov r6,#0 ; initialize station #

 mov a,clk_msec ; init timer comparator: comp. bit 6&7

 anl a,#0e0h ; results in roughly 125 msec cycle

 add a,#20h

 mov r7,a

 clr AM ; start selection with FM

 setb FM

rngloop: call getmode ; read program type

 xrl a,#mode_tset

 jnz terminate

 call readkey

 jc rngrun

 cjne a,#KEY_AM,no_am ; only AM/FM allowed

 mov r6,#40h ; AM?

 sjmp progstart

no_am: cjne a,#KEY_FM,rngrun

 mov r6,#80h ; FM?

 sjmp progstart

rngrun: mov a,clk_msec ; time to toggle?

 anl a,#0e0h

 xrl a,r7

 jnz rngloop ; no-->

 mov a,r7 ; calculate next time

 add a,#20h

 mov r7,a

 cpl AM ; toggle AM/FM display

 cpl FM

 sjmp rngloop

progstart: mov a,r6 ; display range selection

 rlc a

 mov FM,c

 rlc a

 mov AM,c

 mov auxdata,#80h ; start running display at 1

 mov r1,#0

progloop: call getmode ; read program number

 xrl a,#mode_tset

 jnz terminate

 call readnum ; number entered?

 jc numrun ; no-->

 dec a ; must be in range 0..7

 jb acc.3,numrun

 orl a,r6 ; otherwise merge into station marker

 mov r6,a

 mov a,r2 ; calculate address of station marker

 rr a ; we know that bit 0 was 0!

 add a,#prog_perm

 mov r0,a

 mov a,r6 ; store station to RAM

 mov @r0,a

 anl a,#7 ; display in number LEDs

 orl a,#80h

 mov auxdata,a

 sjmp storetime ; go on storing time

numrun: mov a,clk_msec ; time to increment aux display?

 anl a,#0e0h

 xrl a,r7

 jnz progloop ; no->

 mov a,r7 ; calculate next time

 add a,#20h

 mov r7,a

 mov a,auxdata ; increment display

 inc a

 jnb acc.3,nwrap

 mov a,#80h

nwrap: mov auxdata,a

 sjmp progloop

storetime: mov a,r2 ; success: calculate address

 rl a

 add a,#time_permon ; of time to write

 mov r0,a

 mov a,r4 ; save time

 mov @r0,a

 inc r0

 mov a,r5

 mov @r0,a

 call clrdisp ; clear display again

 mov dispdata+2,#1

 mov a,r2 ; go on with next time

 inc a

 ljmp stepdisp

 ljmp loop ; shouldn't be reached

terminate: mov auxdata,#15 ; turn LEDs off afterwards

 clr AM

 clr FM

 ret

 endp

;---

; recall timer values

 proc check

 setb ON ; turn tuner off

 setb MUTE

 clr AM

 clr FM

 mov auxdata,#15 ; turn LEDs off

 call readnum ; wait for a number to be entered

 jc normal ; none->display time, abort

 dec a ; map 1..4->0..3

 clr c

 subb a,#4 ; is number in range?

 jnc normal ; no -> ditto

dloop: add a,#4 ; otherwise restore number...

 mov r2,a ; ...save it...

 rl a ; ...compute address of time...

 add a,#time_permon

 mov r0,a

 call disptime ; ...display time

 mov dispdata+5,#0 ; don't forget to clear!

 mov a,r2 ; restore number

 rrc a ; compute address of program

 clr c

 add a,#prog_perm

 mov r0,a

 mov a,@r0 ; fetch value

 mov c,acc.7 ; display AM/FM

 mov FM,c

 mov c,acc.6

 mov AM,c

 anl a,#3fh ; mask range bits out

 setb acc.7 ; no blinking!

 mov auxdata,a

wloop: call getmode ; wait loop: still in check mode ?

 xrl a,#mode_check

 jnz normal ; no->bail out

 call readnum ; otherwise wait for key as usual

 jc wloop

 dec a

 clr c

 subb a,#4

 jnc wloop

 sjmp dloop ; and display when next key is correct

normal: call dispclk ; none/terminate: display time

 mov auxdata,#15 ; turn LEDs off

 clr AM

 clr FM

 ret

 endp

;---

; delete timer values

 proc cancel

 setb ON ; turn tuner off

 setb MUTE

 clr AM

 clr FM

 mov auxdata,#15 ; turn LEDs off

 call readnum ; wait for a number to be entered

 jc normal ; none->display time, abort

 dec a ; map 1..4->0..3

 clr c

 subb a,#4 ; is number in range?

 jnc normal ; no -> ditto

 push acc

 call clrdisp ; erase display after first numer entry

 mov dispdata+2,#1 ; show just a dot

 pop acc

dloop: add a,#4 ; otherwise restore number..

 setb acc.7 ; ..turn LED continuously on..

 mov auxdata,a

 clr acc.7 ; ..compute address..

 rl a

 add a,#time_permon

 mov r0,a

 clr a ; ..erase value

 mov @r0,a

 setb acc.7

 inc r0

 mov @r0,a

wloop: call getmode ; wait loop: still in check mode ?

 xrl a,#mode_cancel

 jnz normal ; no->bail out

 call readnum ; otherwise wait for key as usual

 jc wloop

 dec a

 clr c

 subb a,#4

 jnc wloop

 sjmp dloop ; and display when next key is correct

normal: call dispclk ; none/terminate: display time

 mov auxdata,#15 ; turn LEDs off

 ret

 endp

;---

; intermediate dummy for unimplemented modes

dummy: call segtranslate

 mov dispdata+1,a

 clr a

 mov dispdata+2,a

 mov dispdata+3,a

 mov dispdata+4,a

 mov dispdata+5,a

 ret

;---

; display time of day

 proc dispclk

 mov a,clk_sec ; seconds runner...

 mov b,#6

 div ab

 mov a,b

 mov r2,#80h ; ...is a running segment

 jz noshift ; avoid 'zero' shift!

 xch a,r2

shloop: rr a

 djnz r2,shloop

 mov r2,a

noshift: mov dispdata+5,r2

 mov dispdata+0,#0 ; no special digits

 mov r0,#clk_min ; rest of time as usual

 call disptime

 ret

 endp

;---

; 250 Hz interrupt: drives clock, runs aux port

clkserve: setb p3.4

 push acc ; save registers

 push psw

 push dpl

 push dph

 regbank 2

 mov r0,#clk_msec ; ptr to clock values

 inc @r0 ; increment millisecond counter

 mov a,@r0

 xrl a,#timeclk ; rollover ?

 jnz noroll

 mov @r0,#0 ; yes -->

 inc r0 ; points to seconds

 inc @r0 ; increment seconds

 mov a,@r0

 xrl a,#60 ; second rollover ?

 jnz noroll

 mov @r0,#0 ; yes -->

 inc r0 ; points to minutes

 inc @r0 ; increment minutes

 mov a,@r0

 xrl a,#60 ; minute rollover ?

 jnz noroll

 mov @r0,#0 ; yes -->

 inc r0 ; points to hours

 inc @r0 ; increment hours

 mov a,@r0

 xrl a,#24 ; hour rollover ?

 jnz noroll

 mov @r0,#0 ; yes -->

noroll: mov dptr,#PORT_AUX ; update aux port

 mov a,clk_msec ; get bit 7 of milliseconds

 orl a,auxdata ; turn on if either bit 7 set

 jnb acc.7,dclear

 mov a,auxdata

 sjmp auxwrite

dclear: mov a,#15

auxwrite: movx @dptr,a ; write the data

 pop dph

 pop dpl

 pop psw

 pop acc

 clr p3.4

 reti

;---

; Timer 0 interrupt: drives display/keyboard multiplexer

dispmux: setb p3.5

 push acc ; save registers

 push psw

 push dpl

 push dph

 regbank 1

 mov dph,#0 ; only use port 0..3

 mov dpl,#PORT_COL ; clear display

 mov a,#0ffh

 movx @dptr,a

 mov dpl,#PORT_ROW ; select row

 mov a,r2

 cpl a

 movx @dptr,a

 mov dpl,#PORT_COL ; output display data

 mov a,@r1

 cpl a

 movx @dptr,a

 mov dpl,#PORT_KBD ; get kbd status

 movx a,@dptr

 cpl a

 mov @r0,a

 inc r0 ; next row

 inc r1

 mov a,r2

 rl a

 jnb acc.6,nowrap ; back to beginning?

 mov a,#1 ; yes-->

 mov r1,#dispdata

 mov r0,#keydata

nowrap: mov r2,a ; write row bit back

 pop dph

 pop dpl

 pop psw ; restore registers

 pop acc

 clr p3.5

 reti ; return - IE0 is cleared automatically

;---

; get operation mode

 proc getmode

 push reg0

 mov a,keydata ; coded in first row of keyboard data

 anl a,#3fh ; omit bits 6&7

 mov r0,#8 ; assume bit 7 is set (never happens...)

loop: rlc a ; bit to test --> carry

 jc bset ; bail out if set

 djnz r0,loop ; otherwise go on...

 mov r0,#mode_off+1 ; default assumption

bset: dec r0 ; correct value

 mov a,r0 ; return in A

 pop reg0

 ret

 endp

;---

; get status of autoscan switch

; Status = 1 or 0 in C

 proc getautoscan

 mov a,keydata+4 ; switch status is in row 4...

 mov c,acc.5 ; ...bit 5

 ret

 endp

;---

; are we in on/off mode?

; C = 0 if yes

 proc chkonoff

 call getmode ; get current mode

 clr c ; default: yes

 cjne a,#mode_on,no_on; dispatch

 sjmp yes

no_on: cjne a,#mode_off,no_off

 sjmp yes

no_off: setb c ; other mode

yes: ret

 endp

;---

; store current frequency to memory

 proc storeprg

 mov auxdata,#15 ; clear num display

 setb STORE ; turn store LED on

storeloop: call chkonoff ; bail out of input loop?

 jc skip_store

 call readnum ; otherwise get number of program

 jc storeloop

 dec a ; transform 1.. --> 0.. , 0 will be sieved out

as 0FFh

 clr c

 subb a,#NUMPROGS ; in allowed range?

 mov b.7,c

 clr c

 add a,#NUMPROGS

 jnb b.7,storeloop

 setb acc.7 ; found a valid number: show in display

 mov auxdata,a

 clr acc.7 ; for address computation

 rl a

 jb AM,store_am ; AM/FM division

 add a,#fm_progs ; store FM program

 mov r0,a

 mov a,fm_prog

 mov @r0,a

 inc r0

 mov a,fm_prog+1

 mov @r0,a

 sjmp skip_store

store_am: add a,#am_progs ; store AM program

 mov r0,a

 mov a,am_prog

 mov @r0,a

 inc r0

 mov a,am_prog+1

 mov @r0,a

skip_store: clr STORE ; LED off again

 ret

 endp

;---

; turn on/off:

 proc switchon_am_prg ; with program number in A

 push reg0 ; needed for addressing

 setb acc.7 ; show program # on aux display

 mov auxdata,a

 clr acc.7

 rl a ; 2 bytes/entry

 add a,#am_progs

 mov r0,a ; transfer data

 mov a,@r0

 mov am_prog,a

 inc r0

 mov a,@r0

 mov am_prog+1,a

 pop reg0

 sjmp doswitch

 public switchon_am

switchon_am: mov auxdata,#15 ; entry without program set

doswitch: clr FM ; switch on & to AM

 setb AM

 setb MUTE

 clr ON

 mov a,p1 ; save AM+FM flag

 anl a,#01100000b

 mov currband,a

 call setfreq ; program synthie after turning on

 ret

 endp

 proc switchon_fm_prg ; with program number in A

 push reg0 ; needed for addressing

 setb acc.7 ; show program # on aux display

 mov auxdata,a

 clr acc.7

 rl a ; 2 bytes/entry

 add a,#fm_progs

 mov r0,a ; transfer data

 mov a,@r0

 mov fm_prog,a

 inc r0

 mov a,@r0

 mov fm_prog+1,a

 pop reg0

 sjmp doswitch

 public switchon_fm

switchon_fm: mov auxdata,#15 ; entry without program set

doswitch: clr AM ; switch on & to FM

 setb FM

 setb MUTE

 clr ON

 mov a,p1 ; save AM+FM flag

 anl a,#01100000b

 mov currband,a

 call setfreq ; program synthie after turning on

 ret

 endp

 proc switchon ; switch on to AM or FM, whichever was last

 mov a,currband ; what was selected?

 jb acc.6,switchon_fm

 sjmp switchon_am

 ret ; never reached...

 endp

 proc switchoff ; switch off

 jb ON,nosave ; when tuner is already off, P1 band info is

invalid

 mov a,p1 ; save AM+FM flag

 anl a,#01100000b

 mov currband,a

nosave:

 clr AM

 clr FM

 setb MUTE

 setb ON

 mov auxdata,#15

 ret

 endp

;---

; get a pressed key

; returns character in A, when C is clear, otherwise C is set

 proc readkey

 push reg0

 push reg1

 push reg2

 push dpl

 push dph

 call kstat ; get current key status

 jc nokey_clr ; if nothing present, exit immediately

 mov r2,a ; save keycode

 xrl a,lastkey ; equal to last key?

 jz autorep ; yes-->to possible auto repeat

 mov a,#delval(40) ; new key: wait 40ms for debouncing

 sjmp waitchk

autorep: mov a,r2 ; repeat only for up/down

 cjne a,#KEY_UP,noup

 mov a,#delval(60) ; repeat rate

 sjmp waitchk

noup: cjne a,#KEY_DOWN,nokey_nclr

 mov a,#delval(60)

waitchk: call delay ; wait for the given time...

 call kstat ; ...and check key status again

 jc nokey_clr ; key released in meantime?

 xrl a,r2 ; still the same?

 jnz nokey_clr ; no-->completely reset

yeskey: mov a,r2 ; we now have the keycode - at last!

 mov lastkey,a ; save for next time

 clr c ; signal key found

 sjmp fin

nokey_clr: mov lastkey,#KEY_NONE ; clear buffer of last key

nokey_nclr: setb c ; no key found

fin: pop dph

 pop dpl

 pop reg2

 pop reg1

 pop reg0

 ret

 proc kstat ; subroutine: get key status

 mov dptr,#PORT_REM ; first check remote control

 movx a,@dptr

 anl a,#3fh ; only bits 0..5 relevant

 jz norem ; value 0 --> no signal from RP300

 call remtranslate ; otherwise translate to keycode

 jb acc.7,norem ; bit 7 set --> unused code

 clr c ; otherwise we have a code

 ret

norem: mov r0,#keydata+1 ; otherwise check key matrix

loop1: mov a,@r0 ; get data of a row

 anl a,#0fh ; keys only in lower nibble

 jnz found1 ; is a bit set? yes-->

 inc r0 ; otherwise, go to next loop

 cjne r0,#keydata+6,loop1 ; all rows checked?

 setb c ; yes --> nothing found

 ret

found1: mov r1,a ; save value

 mov a,r0 ; calculate relative row address

 clr c

 subb a,#keydata+1

 rl a ; 4 keys per row

 rl a

 mov r0,a ; save first part

 mov a,r1 ; now add the bit position

 orl a,#8 ; avoid infinite loop!

loop2: rrc a

 jc found2 ; bail out if found

 inc r0 ; otherwise check next bit

 sjmp loop2

found2: clr c ; return with result

 mov a,r0

 ret

 endp

 endp

;---

; get a number

; returns digit in A, when C is clear, otherwise C is set

 proc readnum

 call readkey ; try to get a key

 jc done ; give up ?

 call key2num

done: ret

 endp

;---

; read a time to R4(m):R5(h)

; gets first entered number in a, mode in r3

 proc readtime

 push reg0

 mov r4,a

 call clrdisp ; first clear display

 setb dig2dot ; set decimal dot at this point

 mov a,r4

 cjne a,#0,n_1_0 ; digit must be between 0..2

 sjmp firstgood

n_1_0: cjne a,#1,n_1_1

 sjmp firstgood

n_1_1: cjne a,#2,skiptens ; if not, take this as 1s of hours

firstgood: mov r0,a ; save 10s of hours

 call segtranslate ; display them

 mov dispdata+1,a

 mov a,r0 ; calculate hours so far

 mov b,#10

 mul ab

 mov r5,a ; save them here

 sjmp loop2 ; go to one's hours entry

skiptens: mov r4,a

 clr a ; no tens entered:

 mov r5,a

 call segtranslate ; display 10s of hour as 0

 mov dispdata+1,a

 mov a,r4 ; restore ones

 sjmp skipones

loop2: call getmode ; bail out ?

 xrl a,r3

 jnz fail

 call readnum ; get second number

 jc loop2

skipones: mov r0,a ; save it temporarily

 add a,r5 ; compute hours

 clr c ; >= 24 ?

 subb a,#24

 jnc loop2 ; yes --> not allowed

 mov a,r0 ; otherwise, display 1s of hours

 call segtranslate

 inc a ; don't forget dot

 mov dispdata+2,a

 mov a,r5 ; and add to 10s of hours

 add a,r0

 mov r5,a

loop3: call getmode ; bail out ?

 xrl a,r3

 jnz fail

 call readnum ; get third number

 jc loop3

 clr c ; must be <= 5

 subb a,#6

 jnc loop3 ; otherwise discard

 add a,#6 ; revert subtraction

 mov r0,a ; save temporarily

 call segtranslate ; display

 mov dispdata+3,a

 mov a,r0 ; store to minutes

 mov b,#10

 mul ab

 mov r4,a

loop4: call getmode ; bail out?

 xrl a,r3

 jnz fail

 call readnum ; get last number

 jc loop4

 mov r0,a

 call segtranslate

 mov dispdata+4,a

 mov a,r0

 add a,r4 ; all digits 0..9 valid :-)

 mov r4,a ; save back to minutes

 clr c ; end with success

done: pop reg0

 ret

fail: setb c ; end without success

 sjmp done

 endp

;---

; convert key in A to number in A

 proc key2num

 clr c ; numeric keys have values from 0..9

 subb a,#10 ; i.e. we should get a borrow now

 cpl c ; if not...

 jc done ; ...forget it

 add a,#11 ; keys 1..9 are now correct

 mov b,#10 ; now get the 10->0 with a modulo op

 div ab

 mov a,b

 clr c ; done

done: ret

 endp

;---

; clear numeric display

 proc clrdisp

 clr a ; no comment ;-)

 mov dispdata+1,a

 mov dispdata+2,a

 mov dispdata+3,a

 mov dispdata+4,a

 mov dispdata+5,a

 clr KHZ

 clr MHZ

 ret

 endp

;---

; write message at (DPTR) to display

 proc write

 push reg0

 call clrdisp ; clear other stuff

 mov r0,#dispdata+1 ; points to leftmost digit

loop: clr a ; get a byte from string

 movc a,@a+dptr

 jz done ; terminate at NUL

 call segtranslate ; otherwise translate...

 mov @r0,a ; ...and print

 inc dptr ; next char

 inc r0 ; next digit

 mov a,r0 ; end of display reached?

 cjne a,#dispdata+6,loop

done: pop reg0

 ret

 endp

;---

; display a time stored at (R0)

 proc disptime

 inc r0 ; bit 7 of hours set ?

 mov a,@r0

 dec r0

 jb acc.7,invtime

 clr KHZ ; no frequency display!

 clr MHZ

 mov a,@r0 ; display minutes

 mov b,#10

 div ab

 call segtranslate

 mov dispdata+3,a

 mov a,b

 call segtranslate

 mov dispdata+4,a

 inc r0

 mov a,@r0 ; display hourss

 mov b,#10

 div ab

 jz suppress ; suppress leading 0 for hours

 call segtranslate

suppress: mov dispdata+1,a

 mov a,b

 call segtranslate

 setb acc.0 ; dot between hour + min

 mov dispdata+2,a

 ret

invtime: clr a ; clear display for invalid time

 mov dispdata+1,a

 mov dispdata+3,a

 mov dispdata+4,a

 setb acc.0

 mov dispdata+2,a

 ret

 endp

;---

; display frequency

 proc dispfreq

 jb AM,amdisp ; display AM or FM

 call dispfm

 sjmp done

amdisp: call dispam

done: ret

 endp

;---

; display AM frequency

 proc dispam

 mov a,am_prog+1 ; get higher byte

 mov b,#16 ; split into digits

 div ab

 jz zero ; suppress leading 0

 call segtranslate ; display 10s..

zero: mov dispdata+1,a

 mov a,b ; ..1s..

 call segtranslate

 mov dispdata+2,a

 mov a,am_prog ; get lower byte

 mov b,#16 ; split into digits

 div ab

 call segtranslate ; display 10s..

 mov dispdata+3,a

 mov a,b ; ..1s..

 call segtranslate

 mov dispdata+4,a

 mov dispdata+5,#0 ; unused place

 clr MHZ

 setb KHZ

 ret

 endp

;---

; display FM frequency

 proc dispfm

 mov a,fm_prog+1 ; get higher byte

 clr acc.7 ; clear 50kHz step

 mov b,#16 ; split into digits

 div ab

 jz zero ; suppress leading 0

 call segtranslate ; display 100s..

zero: mov dispdata+1,a

 mov a,b ; ..10s..

 call segtranslate

 mov dispdata+2,a

 mov a,fm_prog ; get lower byte

 mov b,#16 ; split into digits

 div ab

 call segtranslate ; display 1s..

 setb acc.0

 mov dispdata+3,a

 mov a,b ; ..0.1s..

 call segtranslate

 mov dispdata+4,a

 mov a,fm_prog+1 ; display .05 step

 mov c,acc.7

 clr a

 mov acc.0,c

 mov acc.2,c

 call segtranslate

 mov dispdata+5,a ; unused place

 clr KHZ

 setb MHZ

 ret

 endp

;---

; tune up: manually increment with optional auto-repeat, search

 proc tuneup

 public doauto_up

 mov auxdata,#15 ; surely not a set program any more!

 call getautoscan ; shall we search ?

 jc doauto_up ; yes-->

 call freq_up ; one manual step up

 call setfreq

 call dispfreq

 mov firstdel,#13 ; leave about 13 steps out until repeat starts

uploop: call readkey ; still up key pressed ?

 jc terminate

 xrl a,#KEY_UP

 jnz terminate

 mov a,firstdel ; still in delay phase ?

 jz dostep

 dec a ; yes-->

 mov firstdel,a

 sjmp uploop

dostep: setb MUTE ; mute in repeat mode

 call freq_up ; one repeat step

 call setfreq

 call dispfreq

 sjmp uploop

terminate: ret

doauto_up: call getautoscan ; auto scan terminated ?

 jnc terminate ; yes-->bail out

 call chkonoff ; tuner still on?

 jc terminate ; no-->bail out

 call readkey ; key pressed ?

 jc nokey

 cjne a,#KEY_UP,noup ; further up key inputs ignored

 sjmp nokey

noup: cjne a,#KEY_DOWN,terminate ; key up changes search direction

 sjmp doauto_dn

nokey: setb MUTE ; search loop: silence

 call freq_up ; one step up

 call dispfreq

 call setfreq

 mov a,#delval(100) ; wait a moment for tuner to sync

 call delay

 jb STATION_DET,terminate ; stop if found

 sjmp doauto_up ; otherwise go on

 endp

;---

; tune down: manually increment with optional auto-repeat, search

 proc tunedown

 public doauto_dn

 mov auxdata,#15 ; surely not a set program any more!

 call getautoscan ; shall we search ?

 jc doauto_dn ; yes-->

 call freq_down ; one manual step down

 call setfreq

 call dispfreq

 mov firstdel,#13 ; leave about 13 steps out until repeat

downloop: call readkey ; still down key pressed ?

 jc terminate

 xrl a,#KEY_DOWN

 jnz terminate

 mov a,firstdel ; still in delay phase ?

 jz dostep

 dec a ; yes-->

 mov firstdel,a

 sjmp downloop

dostep: setb MUTE ; mute in repeat mode

 call freq_down ; one repeat step

 call setfreq

 call dispfreq

 sjmp downloop

terminate: ret

doauto_dn: call getautoscan ; auto scan terminated ?

 jnc terminate ; yes-->bail out

 call chkonoff ; tuner still on?

 jc terminate ; no-->bail out

 call readkey ; key pressed ?

 jc nokey

 cjne a,#KEY_DOWN,nodown ; further key inputs ignored

 sjmp nokey

nodown: cjne a,#KEY_UP,terminate ; key up changes search direction

 sjmp doauto_up

nokey: setb MUTE ; search loop: silence

 call freq_down ; one step up

 call dispfreq

 call setfreq

 mov a,#delval(100) ; wait a moment for tuner to sync

 call delay

 jb STATION_DET,terminate ; stop if found

 sjmp doauto_dn ; otherwise go on

 endp

;---

; increment frequency

 proc freq_up

 jb FM,incfm ; differentiate AM/FM

 mov a,am_prog ; increment lower part

 add a,#9

 da a

 mov am_prog,a

 jnc amdone

 mov a,am_prog+1 ; optionally increment upper part

 add a,#1

 da a

 mov am_prog+1,a

amdone: mov a,am_prog ; hit upper limit?

 cjne a,#lo(MAX_AM1),done

 mov a,am_prog+1

 cjne a,#HI(MAX_AM1),done

 mov am_prog,#LO(MIN_AM) ; yes-->set to lower limit

 mov am_prog+1,#HI(MIN_AM)

 setb MUTE ; we don't want to hear the PLL sync in this

case!

 sjmp done

incfm: mov a,fm_prog+1 ; first toggle 50kHz flag

 cpl acc.7

 mov fm_prog+1,a

 jb acc.7,fmdone ; if bit goes to 1, no carry

 mov a,fm_prog ; otherwise increment next frequency digit

 add a,#1

 da a

 mov fm_prog,a

 jnc fmdone ; done if no carry

 mov a,fm_prog+1 ; otherwise increment upper byte

 add a,#1

 da a

 mov fm_prog+1,a

fmdone: mov a,fm_prog ; hit upper limit?

 cjne a,#lo(MAX_FM1),done

 mov a,fm_prog+1

 cjne a,#HI(MAX_FM1),done

 mov fm_prog,#LO(MIN_FM) ; yes-->set to lower limit

 mov fm_prog+1,#HI(MIN_FM)

 setb MUTE ; we don't want to hear the PLL sync in this

case!

done: ret

 endp

;---

; decrement frequency

 proc freq_down

 jb FM,decfm ; differentiate AM/FM

 mov a,am_prog ; decrement lower part

 clr c

 subb a,#9

 call da_s

 mov am_prog,a

 jnc amdone

 mov a,am_prog+1 ; optionally decrement upper part

 clr c

 subb a,#1

 call da_s

 mov am_prog+1,a

amdone: mov a,am_prog ; hit lower limit?

 cjne a,#lo(MIN_AM1),done

 mov a,am_prog+1

 cjne a,#HI(MIN_AM1),done

 mov am_prog,#LO(MAX_AM) ; yes-->set to upper limit

 mov am_prog+1,#HI(MAX_AM)

 setb MUTE ; we don't want to hear the PLL sync in this

case!

 sjmp done

decfm: mov a,fm_prog+1 ; first toggle 50kHz flag

 cpl acc.7

 mov fm_prog+1,a

 jnb acc.7,fmdone ; if bit goes to 0, no carry

 mov a,fm_prog ; otherwise decrement next frequency

 clr c

 subb a,#1

 call da_s

 mov fm_prog,a

 jnc fmdone ; done if no carry

 mov a,fm_prog+1 ; otherwise decrement upper byte

 clr c

 subb a,#1

 call da_s

 mov fm_prog+1,a

fmdone: mov a,fm_prog ; hit lower limit?

 cjne a,#lo(MIN_FM1),done

 mov a,fm_prog+1

 cjne a,#HI(MIN_FM1),done

 mov fm_prog,#LO(MAX_FM) ; yes-->set to upper limit

 mov fm_prog+1,#HI(MAX_FM)

 setb MUTE ; we don't want to hear the PLL sync in this

case!

done: ret

 endp

;---

; digital input of FM frequency

 proc freqinp_fm

 call clrdisp ; preinitialize display

 setb MHZ

 mov auxdata,#15

 setb dig3dot

 mov r5,#0 ; need preinit for different branches

loop1: call chkonoff ; bail out ?

 ljc badval

 call readnum ; get first digit

 jc loop1

 cjne a,#0,no0 ; is this 0 or 1 ?

 sjmp ishund

no0: cjne a,#1,isten

 sjmp ishund

isten: orl a,r5 ; tens: store digit

 mov r5,a

 anl a,#15

 call segtranslate ; display

 mov dispdata+2,a

 sjmp loop3

ishund: swap a ; 0 or 1: store as 100s

 mov r5,a

 swap a ; display 100s

 call segtranslate

 mov dispdata+1,a

loop2: call chkonoff ; bail out ?

 jc badval

 call readnum ; get tens of MHz

 jc loop2

 sjmp isten ; go on as in other case

loop3: call chkonoff ; bail out ?

 jc badval

 call readnum ; get ones

 jc loop3

 swap a ; store them

 mov r4,a

 swap a ; display them

 call segtranslate

 inc a ; don't forget dot!

 mov dispdata+3,a

loop4: call chkonoff ; bail out ?

 jc badval

 call readnum ; get 100s of kHz

 jc loop4

 orl a,r4 ; merge in

 mov r4,a

 anl a,#15 ; display

 call segtranslate

 mov dispdata+4,a

loop5: call chkonoff ; bail out ?

 jc badval

 call readnum ; get opt. 50 kHz step

 jc loop5

 mov b,a ; save last digit

 jz no50 ; no 50 kHz step ?

 cjne a,#5,loop5 ; ignore everyting but 0 and 5

 mov a,r5 ; otherwise set 50 kHz flag

 setb acc.7

 mov r5,a

; since the LSB (the 50kHz step) is by default in the upmost bit, comparison

; becomes simpler when we rotate everything one digit left

no50: mov a,b ; display last digit

 call segtranslate

 mov dispdata+5,a

 mov a,#lo(MIN_FM) ; compute lower bound

 mov b,#hi(MIN_FM)

 call lrot16

 mov r0,a

 mov r1,b

 mov a,r4 ; rotate comparison value

 mov b,r5

 call lrot16

 call sub16 ; compare values

 jc badval ; C=1 -> not good

 mov a,#lo(MAX_FM1) ; compute upper bound

 mov b,#hi(MAX_FM1)

 call lrot16

 mov r0,a

 mov r1,b

 mov a,r4 ; rotate comparison value

 mov b,r5

 call lrot16

 call sub16 ; compare values

 jnc badval ; C=0 -> not good

 clr c ; everything fine:

 mov a,r4 ; store to current frequency

 mov fm_prog,a

 mov a,r5

 mov fm_prog+1,a

 ret

badval: mov dptr,#str_error ; respond that that was invalid

 call write

 mov a,#delval(800) ; leave err msg visible a bit

 call delay

 setb c ; not good...

 ret

 endp

;---

; digital input of AM frequency

 proc freqinp_am

 call clrdisp ; preinitialize display

 setb KHZ

 mov auxdata,#15

 mov r5,#0 ; need preinit for different branches

 mov r3,#0

loop1: call chkonoff ; bail out ?

 ljc badval

 call readnum ; get first digit

 jc loop1

 cjne a,#0,no0 ; is this 0 or 1 ?

 sjmp isthou

no0: cjne a,#1,ishund

 sjmp isthou

ishund: orl a,r5 ; hundreds: store digit

 mov r5,a

 anl a,#15

 call segtranslate ; display

 mov dispdata+2,a

 sjmp loop3

isthou: swap a ; 0 or 1: store as 1000s

 mov r5,a

 swap a ; display 1000s

 call segtranslate

 mov dispdata+1,a

loop2: call chkonoff ; bail out ?

 jc badval

 call readnum ; get hundreds of kHz

 jc loop2

 sjmp ishund ; go on as in other case

loop3: call chkonoff ; bail out ?

 jc badval

 call readnum ; get tens

 jc loop3

 swap a ; store them

 mov r4,a

 swap a ; display them

 call segtranslate

 mov dispdata+3,a

loop4: call chkonoff ; bail out ?

 jc badval

 call readnum ; get 1s of kHz

 jc loop4

 orl a,r4 ; merge in

 mov r4,a

 anl a,#15 ; display

 call segtranslate

 mov dispdata+4,a

 mov r0,#lo(MIN_AM) ; compare lower bound

 mov r1,#hi(MIN_AM)

 mov a,r4 ; get comparison value

 mov b,r5

 call sub16 ; compare values

 jc badval ; C=1 -> not good

 mov r0,#lo(MAX_AM1) ; compare upper bound

 mov r1,#hi(MAX_AM1)

 mov a,r4 ; rotate comparison value

 mov b,r5

 call sub16 ; compare values

 jnc badval ; C=0 -> not good

 mov a,r4 ; build digit sum (must be dividable by

9)

 mov b,#16

 div ab

 add a,b

 mov r3,a

 mov a,r5

 mov b,#16

 div ab

 add a,b

 add a,r3

 mov b,#9 ; check if remainder 0

 div ab

 mov a,b

 jnz badval

 clr c ; everything fine:

 mov a,r4 ; store to current frequency

 mov am_prog,a

 mov a,r5

 mov am_prog+1,a

 ret

badval: mov dptr,#str_error ; respond that that was invalid

 call write

 mov a,#delval(800) ; leave err msg visible a bit

 call delay

 setb c ; not good...

 ret

 endp

;---

; program current frequency into synthesizer

 proc setfreq

 clr ea ; we need the display lines for the synthie

 ; at this point, therefore clear diaplay

 mov dptr,#PORT_ROW ; blank display

 mov a,#0ffh

 movx @dptr,a

 mov dptr,#PORT_COL ; bits 0..3 contain register address/data

 jb AM,do_am ; program for AM ?

 mov r0,#1 ; constant value for FM

 mov a,fm_prog ; add the 10.7 MHz IF to frequency

 add a,#07h

 da a

 mov r4,a ; save 100s of kHz

 swap a ; save 1s of MHz

 mov r3,a

 mov a,fm_prog+1 ; addition of upper part

 addc a,#01h

 da a

 mov r5,#4 ; assume no 50 kHz offset

 jnb acc.7,no50

 mov r5,#2 ; otherwise different value for reg 7

no50: clr acc.7 ; remove +50 flag

 mov r2,a ; save 10s of MHz

 swap a ; save 100s of MHz

 mov r1,a

 sjmp do_it ; skip to programming

do_am: mov r0,#2 ; constant value for AM

 mov a,am_prog ; add the 450 kHz IF to frequency

 add a,#50h

 da a

 mov r4,a ; save LSB temporarily

 mov a,am_prog+1 ; add MSBs

 addc a,#04h

 da a

 call dec2bin ; now start division by 9: first step

 mov b,#9

 div ab

 mov r1,a ; -->100s result

 mov a,r4 ; build next part of division: remainder|10s

 anl a,#0f0h

 orl a,b

 swap a

 call dec2bin

 mov b,#9

 div ab

 mov r2,a ; -->10s result

 mov a,r4 ; build last part of division: remainder|1s

 anl a,#0fh

 swap a

 orl a,b

 swap a

 call dec2bin

 mov b,#9

 div ab

 mov r3,a ; remainder should be 0 now ;-)

 mov r4,#0 ; constant values for AM

 mov r5,#0

do_it: mov a,#2 ; first, set register 2 to 0

 lcall setsyn

 setb LATCHCLK

 mov a,#0

 lcall setsyn

 clr LATCHCLK

 mov a,#1 ; next, value for reg 1

 lcall setsyn

 setb LATCHCLK

 mov a,r0

 lcall setsyn

 clr LATCHCLK

 mov a,#3 ; next, value for reg 3

 lcall setsyn

 setb LATCHCLK

 mov a,r1

 lcall setsyn

 clr LATCHCLK

 mov a,#4 ; next, value for reg 4

 lcall setsyn

 setb LATCHCLK

 mov a,r2

 lcall setsyn

 clr LATCHCLK

 mov a,#5 ; next, value for reg 5

 lcall setsyn

 setb LATCHCLK

 mov a,r3

 lcall setsyn

 clr LATCHCLK

 mov a,#6 ; next, value for reg 6

 lcall setsyn

 setb LATCHCLK

 mov a,r4

 lcall setsyn

 clr LATCHCLK

 mov a,#7 ; next, value for reg 7

 lcall setsyn

 setb LATCHCLK

 mov a,r5

 lcall setsyn

 clr LATCHCLK

 mov a,#8 ; finally, set register 8 to 7

 lcall setsyn

 setb LATCHCLK

 mov a,#7

 lcall setsyn

 clr LATCHCLK

done: setb ea ; reenable ints

 mov a,#delval(999) ; wait max. 1 sec for PLL to sync

 call nexttime

 mov b,a

syncloop: jb LOCK,didsync ; PLL has found frequency

 mov a,clk_msec ; otherwise, test for timeout

 xrl a,b

 jnz syncloop ; go on testing if not timed out

 mov dptr,#str_nosyn ; print sync error

 call write

 mov a,#delval(800)

 call delay

didsync: clr MUTE ; turn Audio on again

 ret

setsyn: anl a,#15 ; mask nibble

 add a,#2 ; correct value

 movc a,@a+pc ; read from table

 movx @dptr,a ; write to port

 ret ; done

 db 00h,80h,40h,0c0h; table for bit mirroring

 db 20h,0a0h,60h,0e0h

 db 10h,90h,50h,0d0h

 db 30h,0b0h,70h,0f0h

 endp

;---

; delay by (A) ticks (1 tick = 4ms @ 250Hz)

 proc delay

 push reg0

 inc a ; first assure we don't wait too few

 add a,clk_msec ; compute target value

 mov r0,a ; save this

 add a,#6 ; is the target value between 250..255 ?

 jnc loop

 mov r0,a ; yes->wrap it

loop: mov a,clk_msec ; wait for target value

 xrl a,r0

 jnz loop

 pop reg0

 ret

 endp

;---

; calculate target tick value, taking 249->0 rollover into account

 proc nexttime

 push reg0

 forward nowrap

 inc a ; first assure we don't wait too few

 add a,clk_msec ; compute target value

 mov r0,a ; save this

 add a,#6 ; is the target value between 250..255 ?

 jnc nowrap

 mov r0,a ; yes->wrap it

nowrap: mov a,r0

 pop reg0

 ret

 endp

;---

; decimal adjustment after subtraction

 proc da_s

 mov b,psw ; save C+AC

 mov c,ac ; first process lower nibble

 call donibble

 mov b.6,c

 swap a ; then process upper nibble

 mov c,b.7

 call donibble

 mov b.7,c

 swap a

 mov psw,b ; get carry results

 ret

donibble: jc do ; always do when carry set

 jnb acc.3,nodo ; don't do for 0..7

 jb acc.2,do ; do for C..F

 jnb acc.2,nodo ; don't do for 8..9

 ; -->do for A..B

do: clr c ; correction value

 subb a,#6

 setb c

 ret

nodo: clr c ; no correction

 ret

 endp

;---

; conversion BCD --> BIN:

 proc dec2bin

 push acc ; save temporarily

 swap a ; extract 10s digit

 anl a,#0fh

 mov b,#10 ; multiply up

 mul ab

 mov b,a ; save temp result

 pop acc ; extract ones

 anl a,#0fh

 add a,b ; assemble result

 ret

 endp

;---

; 16-bit-rotation of B:A :

 proc lrot16

 rlc a ; rot lower half, bit into cary

 xch a,b ; rot upper half

 rlc a

 xch a,b

 mov acc.0,c ; correct bit that wrapped

 ret

 endp

;---

; 16-bit-subtraction of B:A - R1:R0 :

 proc sub16

 clr c ; lower half

 subb a,r0

 xch a,b ; upper half

 subb a,r1

 xch a,b

 ret

 endp

;---

; segment translation; 0-9

;

; Bits: 7

; 2 6

; 1

; 3 5

; 4

segtranslate: inc a

 movc a,@a+pc

 ret

 db 0fch,060h,0dah ; 7-segment codes for decimals 0..9

 db 0f2h,066h,0b6h

 db 0beh,0e0h,0feh

 db 0f6h

 db 09eh,00ah,03ah ; e,r,o

 db 02ah,0b6h,076h ; n,S,y

 db 09ch,0eeh,0ceh ; C,A,P

 db 02eh,07ch,06eh ; h,U,X

;---

; segment translation; 0-9/A-F

hextranslate: inc a

 movc a,@a+pc

 ret

 db 0fch,060h,0dah ; 7-segment codes for decimals 0..9

 db 0f2h,066h,0b6h

 db 0beh,0e0h,0feh

 db 0f6h

 db 0eeh,03eh,01ah ; 7-segment codes for hex A..F

 db 07ah,09eh,08eh

;---

; remote control decoder

 proc remtranslate

 anl a,#3fh ; only bit 0..5 relevant

 inc a

 movc a,@a+pc

 ret

 db 80h,00h,01h,02h,03h,04h,05h,06h

 db 07h,08h,09h,KEY_STEP,KEY_FREQINP,80h,80h,80h

 db 80h,80h,80h,KEY_TAPE,KEY_TUNER,KEY_PHONO,KEY_AUX,80h

 db 80h,80h,80h,KEY_TAPE,80h,80h,80h,80h

 db 80h,80h,80h,80h,KEY_REMOFF,80h,80h,80h

 db 80h,80h,80h,80h,80h,80h,80h,80h

 db 80h,80h,80h,80h,80h,80h,80h,80h

 db KEY_DOWN,KEY_UP,80h,KEY_STORE,80h,80h,80h,80h

 endp

;---

; string constants

; hint: these are not ASCII-coded, we use a 'squeezed' set since anyway only

; a few characters are printable on a 7-segment display

str_error: db "Error",0

str_nosyn: db "noSyn",0

str_tape: db "CASS",0

str_phono: db "Phono",0

str_aux: db "AUX",0

;---

 end

xxx

The Macroassembler AS

Main Page

Latest released version is 1.41r8 (1999-07-11)

Latest -current version is 1.42Bld54 (2006-12-19)
For Mailing List for AS Users, see bottom of this page

Patrick Conrad has provided a Belorussian translation of these pages. Many thanks for his efforts! Click

here for his translation.

AS is a portable macro cross assembler for a variety of microprocessors and -controllers. Though it is

mainly targeted at embedded processors and single-board computers, you also find CPU families in the

target list that are used in workstations and PCs.

AS is completely free, i.e. you may use it for any commercial or non-commercial purpose without having

to pay for it. If your really like AS, I encourage you to either send a bit of money to Greenpeace or a bottle

of your favourite wine to me. If you want to integrate AS or parts of it into other projects, please contact

me; since I really appreciate GNU and its targets, I think that someone who uses parts of AS or extends it

should return something into the "freeware pool"; it's just a matter of fairness!

You may already have noticed that I did not pay much attention to the outer appearance of these pages; The

reasons are manifold:

 Lack of time;

 Laziness ;->

 Better readability with Lynx

http://webhostingrating.com/libs/as-be
http://webhostingrating.com/libs/as-be

