AN50475 – Induction Cooker Design with CapSense®

AN50475

Authors: Robin Chen, Jemmey Huang, Vincent Cai
Associated Project: Yes
Associated Part Family: CY8C22x45
Software Version: PSoC® Designer™ 5.0
Associated Application Notes: None

Abstract
AN50475 discusses the implementation of an induction cooker with CapSense® control based on CY8C22x45. The working principles of an induction cooker and the CY8C22x45 are also described.

Introduction
Touch sensor technology has existed for many years because it is suitable for harsh environments. Capacitance based touch sensors are now widely applied in consumer electronics. Touch sensors appear stylish, and products based on touch sensors are attractive. In home appliances such as the microwave oven, induction cooker, and rice cooker, there is a growing demand for the CapSense button and slider for high-end designs. Typically, there are two microcontrollers in these designs: one for the kernel tasks control, and the other for the CapSense button/slider control. CY8C22x45 is a new PSoC product family that simplifies the design and reduces the system cost. This application note uses the induction cooker as an example to discuss the integration design of CapSense and system control in the CY8C22x45.

Induction Cooker: Working Principle
The induction cooker is a modern electric cooker that uses the electromagnetic induction principle to heat vessels. The induction cooker has a heatproof ceramic panel, which is used as the cooker plane. Through the electrified coil under the plane, the AC current creates a magnetic field that induces a vortex in iron and stainless steel pan bottoms. This heats the pan bottom quickly, and then conducts the heat to food.

This section describes the working principle of the induction cooker. First, the AC current is converted into DC by a rectifier. Next, the DC current is converted into ultrasonic high frequency AC current by a high frequency electric power conversion device. By connecting the high frequency AC current to the flat, hollow, helical heating coil, a high frequency alternating magnetic field is generated. Under the ceramic panel, the electrified coil creates a magnetic field that breaks through the panel and induces a vortex in the iron pan bottom. This converts electric energy into heat energy, while overcoming the internal impedance stream. The generated joule heat is the heat source for cooking.

1. IGBT Automatic Self Protection: Insulated-Gate Bipolar Transistor (IGBT) is the key component of the induction cooker. IGBT works under high voltage and high power conditions. However, considering the high cost and rigid parameters, IGBT is designed with several conditions. Any of the following factors can destroy IGBT: excess voltage, instantaneous impingement generated when power is switched on or off, proliferated current, and excess temperature. IGBT can be damaged even when the iron pan is removed from the ceramic panel or if no pan is placed on the panel. It is necessary to protect the IGBT from these factors.

2. Temperature Control in the Iron Pan Bottom: The heat in the iron pan bottom is directly transferred to the ceramic panel. The ceramic panel is the heat conducting material, so thermal sensors are often fixed in the panel bottom to detect the temperature of the iron pan bottom.

3. Stable Power Control: The output power of the induction cooker can be automatically regulated to improve the adjustment of the power supply and load.

4. User Interface Control: Collect the customer input from the CapSense button or slider, then decide the working mode and display it on relevant light emitting diode (LED).

The major controls of the induction cooker include:

- Iron Pan
- Vortex
- Ceramic Panel
- Electrified Coil
- Magnetic Field

Figure 1. Induction Cooker

March 16, 2011
Document No. 001-50475 Rev. *A
In this example, CY8C22x45 handles the input of eight CapSense buttons. It is also responsible for the entire system control, including current, voltage and temperature sampling, PWM generation for the MOSFET control, induction cooker power control, and system status display.

CY8C22x45 Overview

CY8C22x45 is a product of the PSoC family. It is an enhancement of CY8C21xxx PSoC family, and is targeted at applications that integrate both system control and CapSense control. CY8C22x45 is compatible with other PSoC device architecture, as shown in Figure 2. CY8C22x45 is a Mixed-Signal Array with On-Chip Controller device. Each CY8C22x45 PSoC device includes eight digital blocks and six analog blocks. Depending on the PSoC package, CY8C22x45 provides up to 38 general purpose I/Os (GPIO), 16K flash memory, and a 1K SRAM data memory. Following other PSoC products, CY8C22x45 has fixed function on-chip resources such as I2C, MAC, and more. In addition, CY8C22x45 includes optimized modules such as 10-bit SAR ADC, dedicated CSD digital logic, and dedicated RTC.

Figure 2. CY8C22x45 Block Diagram

To reflect the change in digital blocks, the new digital block for basic functions is renamed as DBC from DBB, and the communication block is renamed as DCC. The digital block adds another data path to implement the enhanced features in DBC or DCC, such as synchronous triggering, kill function, and more. However, even if no enhanced feature is used in the user module, the digital block is fully compatible with the existing PSoC product.

Compared to CY8C21xxx, CY8C22x45 provides two additional CT blocks for general-purpose applications. These analog blocks can be configured as an enhanced feature comparator with flexible input and output choices.

CY8C22x45 also provides a set of digital resources to address the CapSense design. These resources are optimized for CSD implementation. With these resources, the system clock resource VC1/VC2/VC3 and digital blocks are not needed to configure a CSD user module. The CY8C22x45 also keeps a compatible configuration, which helps the customer code migrate from CY8C21xxx. The new CSD user module in CY8C22x45 is capable of simultaneous scanning on dual CSD channel input to reduce the total scanning time in an application.

System Features

In addition to the features that CY8C22x45 provides for CapSense control, the induction cooker design also contains the system control. It has common features that are found in existing products. The features are:

- **AC 220V/50 Hz Power Supply**
- **1800W Rated Power**
- **Resonant Circuit for Induction Cooker Control**
- **More than Ten LEDs and Four Digital LED Segment Display**
- **Buzzer for Alarm**
- **Fan On/Off and PWM Control**
- **Adjustable Fixed Temperature Cooking Mode that Supports 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, and 260°C.**
- **Multilevel of Firepower Selection (200W, 400W, 600W 800W, 1000W, 1200W, 1400W, 1600W and 1800W) and Stable Power Control**
- **Cooking Pan Auto Detect**
- **Multi Cooking Mode Selection**
- **Multiple Protection**
 - Auto Power Off When Not Cooking on Pans
 - AC Over Voltage and Under Voltage Protection
 - AC Over Current Protection
 - Pan Overheat Protection
 - IGBT Overheat Protection
- **Time-Switch Cooking Function**
- **12 CapSense Buttons for Menu Selection**
More advanced CapSense features are to be included in future designs. These functions include:

- CapSense Slider for Menu Selection
- Waterproofing CapSense Button
- Boil Over Detection
- CapSense Sensor Failure Detection

System Hardware
There are two PCB boards in the design. They are connected by an 11-pin ripple cable.

The first PCB board is the power control board, which is closed to the electrified coil on the bottom of the cooker. It includes the AC power input rectifier, choker, IGBT for DC/AC conversion, the zero-voltage switching control circuit for IGBT, current sensing and other high voltage components, DC power sup er, fan and buzzer driver, and more. Figure 3 shows the block diagram of the power module board. All the components on this board are discrete components.

Figure 3. Power Control Board

The second PCB board is the main controller board based on CY8C22x45. This board is responsible for system control and user interface control. It is mounted on the top side of the cooker. This board handles the scanning of eight CapSense buttons and the LED displaying control. It is also responsible for the entire system control, including current, voltage, and temperature sampling, generating PWM duty cycle for the induction cooker power control, over-current, over voltage, and over temperature protection, menu operation control, and system status display. A real-time clock provided by CY8C22x45 is also applied for the timer in the cooker. Figure 4 shows the block diagram of the main controller board.

Figure 4. Main Controller Board

Dual-Channel CapSense Scan
Dual-channel CSD scanning is a new feature of CY8C22x45. It has the following advantages over the old CSD logic:

- The dual-channel CSD logic does not consume any digital block resource.
- It has two separated CSD logic and can support dual-channel CSD scan.
- Dedicated clock resource frees the VC1/VC2/VC3 clocks for other system control.
- M8C needs to respond to only one interrupt for each CapSense button scan.

Figure 5. Block Diagram of CSD2X

When the user module runs, only one interrupt can happen at the end of the scan. This allows the CPU to release more...
MIPS, and allows multisource interrupts. The analog bus is split into two separate sections: left analog bus and right analog bus. As a result, it can simultaneously support dual-channel CSD scan.

The dual-channel CSD user module consumes only CSD logic, two analog columns, left and right analog bus, and dual-channel IDAC. The following figure shows the consumption.

Figure 6. Resource of CSD2X

IO Expansion by 74HC164

IO expansion is necessary in many home appliance applications. Typically, a serial-parallel converter logic chip, such as 74HC164, is applied to the system for LED control. 74HCT164 are 8-bit edge-triggered shift registers with serial data entry and output from each of the eight stages. As a result, the system can consume less IOs than the solution that drives the LED directly. The input signals of 74HCT164 are Data and Clock. This is in compliance with the SPI bus. Refer the Appendix Board Schematics (Figure 11 and Figure 12 on pages 8 and 9 respectively) for more information.

Low-Pass Filter for Analog Signal

There are four analog signals in the control board. They are all voltage signals, including the AC RMS voltage, AC average current, and the temperatures of the pan and IGBT. The range of these signals is from 0 to 5V. Because these signals are the output from the noise power board, a capacitive low-pass filter is designed before the signal enters PSoC. Figure 4 on page 3 shows the typical circuit.

Figure 7. Capacitive Low-Pass Filter

\[
\text{Vin} \rightarrow R \rightarrow C \rightarrow \text{Vout}
\]

The cutoff frequency is:

\[
\text{fcutoff} = \frac{1}{2\pi RC}
\]
Equation 1

In Equation 1, assuming the value of R is 47 kohm and the value of C is 0.1 uf, then the circuit gets a cutoff frequency at 33.9 Hz. This is because these signals change very slowly, especially the temperature signals of the pan and IGBT. The parameters of this capacitive low-pass filter can meet the system design requirement.

Board Connector Definition and Description

The following table indicates the board connector definition and description.

Table 1. Board Connector Definition

<table>
<thead>
<tr>
<th>Pin</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power</td>
<td>Power Supply of 5V</td>
</tr>
<tr>
<td>2</td>
<td>Analog Input</td>
<td>Temperature of Coil</td>
</tr>
<tr>
<td>3</td>
<td>Analog Input</td>
<td>Temperature of IGBT</td>
</tr>
<tr>
<td>4</td>
<td>Analog Input</td>
<td>Temperature of Pan</td>
</tr>
<tr>
<td>5</td>
<td>Digital Output</td>
<td>PWM Output Signal for Power Control</td>
</tr>
<tr>
<td>6</td>
<td>Analog Input</td>
<td>AC RSM Voltage</td>
</tr>
<tr>
<td>7</td>
<td>Analog Input</td>
<td>AC Average Current</td>
</tr>
<tr>
<td>8</td>
<td>Digital Output</td>
<td>PWM Output Enable Signal</td>
</tr>
<tr>
<td>9</td>
<td>Digital Output</td>
<td>Fan Output</td>
</tr>
<tr>
<td>11</td>
<td>Ground</td>
<td>Ground</td>
</tr>
</tbody>
</table>

System Firmware

The system firmware is relatively complicated. Because the system functions include the user interface control, such as the CapSense button scan and LED display, it also includes the analog signals sampling and internal timer. In addition, the control algorithm implementation such as fixed temperature control algorithm, stable power control algorithm, multiple protections, and induction cooker kernel functions are also included. The following figure shows the high level flowchart of the firmware.
Figure 8. Flowchart of Firmware

Start

Hardware/Register Initialization

Working Mode Control Module

ADC Module (AC voltage, current, NTC Pan, NTC (IGBT))

Buzzer Control Module

Fan Control Module

Button Scan (CSD) Module

IGBT Control Module (Actual Power Calculation, Pan Auto-detect fixed temperature control algorithm stable power control algorithm)

Protection Module

PSoC Digital Block and Analog Resources Consumed

The following table lists the digital blocks, analog blocks, and other resources consumed in the induction cooker system.

Table 2. PSoC Digital Block and Analog Resources

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE02</td>
<td>Used be CSD2X for button scan</td>
</tr>
<tr>
<td>ACE03</td>
<td>Used be CSD2X for button scan</td>
</tr>
<tr>
<td>CSD2X</td>
<td>Button scan</td>
</tr>
<tr>
<td>RTC</td>
<td>System timer</td>
</tr>
<tr>
<td>SAR10</td>
<td>Analog signals sampling</td>
</tr>
</tbody>
</table>

Figure 9. System Interconnection

LEDs and 7-Segment Digital LED Display Refresh

The user interface of the induction cooker is important, because the end user exchanges all information through it. In the design, the 74HC164 is used to expand the IO to drive the four 7-segment LED display. Any delay in refreshing results in the blinking of the LED. So an 8-bit timer is used in the firmware, and the interrupt of the timer requests the LEDs to be refreshed. A display buffer, whose value is set in main loop, is also used to refresh the LEDs. In the Timer8 IRQ, the contents of this buffer are sent out through the SPI user module, which is cascaded with the 74HC164 for LED driving. The LEDs are grouped by 6, and each group is turned on in sequence. The scan interval is set as 2 ms or 3 ms, so the refresh rate is around 55 Hz to 83 Hz.

The following firmware shows the scan of the LED display:

BYTE baLedBuf[6]; // display buffer

The refreshing code in the Timer8 IRQ is:

void Timer8_ISR(void)
{
 static BYTE bLedTimer;
}
The digital filter is widely used in the control. However, not all digital filters can be implemented on the PSoC, because many digital filters need enhanced MAC units to speed the calculation. In this system, a simple one order IIR low-pass digital filter is introduced, and the IIR filter is used for analog input signal processing. The algorithm is shown in the following formula.

\[y_n = a \cdot x_n + (1 - a) \cdot y_{n-1} \] \hspace{1cm} \text{Equation 2}

In Equation 2:
- \(a \) is the filter coefficient.
- \(x_n \) is the current sampling value.
- \(y_n \) is the current output of filter.
- \(y_{n-1} \) is the last output of filter.

To finish the calculation, the multiplication and addition operations need two times. Considering the PSoC CPU resources, the calculation is still complicated. To achieve the low-pass filter and simplify this algorithm, the special filter coefficient is required. For example, using \(a = 0.25 \), the following formula is obtained:

\[y_n = 0.25 \cdot x_n + 0.75 \cdot y_{n-1} \] \hspace{1cm} \text{Equation 3}

Replacing multiplication operation with bit-shifting operation, the formula can be changed to:

\[y_n = x_n \gg 2 + y_{n-1} \gg 1 + y_{n-1} \gg 2 \] \hspace{1cm} \text{Equation 4}

With this equation, only three bit-shifting operations and three addition operations are needed for the calculation. In this system, the value of \(a = 0.25 \). The cutoff frequency of this filter is 1.33 Hz, according to the following formula with a sampling period of 40 ms.

\[f_{\text{cutoff}} = a/2\pi T(1-a) \] \hspace{1cm} \text{Equation 5}

In Equation 5, \(T \) is the sampling period.

PI Close Loop Control Algorithm

The induction cooker can support fixed power cooking and fixed temperature cooking modes. PI close loop control is applied in both the fixed power cooking mode and the fixed temperature cooking mode. The PI control algorithm is very useful in a continuous control system. There are two basic PI control algorithms: absolute mode and increment mode PI control algorithm. The following equation is a discrete expression of the position mode of the PI algorithm.

\[u_k = K_p \cdot c_k + K_i \cdot \sum_{i=1}^{k-1} c_i + u_0 \] \hspace{1cm} \text{Equation 6}

In Equation 6:
- \(e_k \) is power error.
- \(K_p \) is the integration coefficient.
- \(K_f \) is the proportional coefficient.

Another mode of PI algorithm is the increment mode, and the formula is:

\[\Delta u_k = u_k - u_{k-1} = K_p \cdot (c_k - c_{k-1}) + K_i \cdot c_k \] \hspace{1cm} \text{Equation 7}

Compared to the absolute mode PI algorithm, the increment mode PI algorithm has the following advantages:

- There is no accumulation using this formula, and the result can be obtained by the last two sample values.
- The output of this formula is the increment value, and with firmware protection there is less chance for errors.
- The complexity of increment mode PI algorithm is less than that of absolute mode. It can save more PSoC system resources.
Figure 10 shows the block diagram of PI algorithm power control for fixed power cooking mode.

Figure 10. Block Diagram of PI Algorithm Power Control

The PWM output is the control signal of the main resonant power. Through a low-pass filter in the power control board, a reference voltage is achieved. The reference voltage is the input signal of IGBT control logical circuits, which has functions of pulse generation, synchronization, protection and IGBT driver. The main resonant circuit output increases with the reference voltage. As a result, the induction cooker power can be adjusted by changing the duty of PWM.

If the induction cooker works in fixed power cooking mode, the close loop is implemented in the following steps: sample RSM value of voltage and RSM value of current of main resonant circuit; calculate current power; compare with reference power and get error; adjust the duty of the PWM output according to the PI algorithm.

Summary

This application note describes induction cooker control system based on PSoC chip CY8C22x45. With the assistance of PSoC device, all the functions of the control board can be integrated into one chip. With few external components and optimized algorithm, this design incorporates all the kernel functions of the induction cooker, CapSense button scan, stable power close loop control, and fixed temperature close loop control.

About the Authors

Name: Robin Chen
Title: Application Engineer Staff.
Contact: robc@cypress.com

Name: Jemmey Huang
Title: Product Apps Manager Sr.
Contact: jhu@cypress.com

Name: Vincent Cai
Title: Application Engineer Sr.
Contact: wcai@cypress.com
Appendix

Figure 11. Board Schematic
Figure 12. Schematic Drawing of Induction Cooker Evaluation Kit
Figure 13. Photograph of Induction Cooker Evaluation Kit
Figure 14. Induction Cooker FW Architecture Flowchart

Main Loop

Start

Hardware/Register Initialization

Working Mode Control Module

LED Display Module

ADC Module (AC voltage, current, NTC Pan, NTC IGBT)

Buzzer Control Module

Fan Control Module

Button Scan (CSD) Module

IGBT Control Module (Actual Power Calculation, Pan Auto-detect fixed temperature control algorithm stable power control algorithm)

Protection Module

Timer ISR

Start

Tick++

LED Refreshing

End
Document History

Document Title: AN50475 – Induction Cooker Design With CapSense®

Document Number: 001-50475

<table>
<thead>
<tr>
<th>Revision</th>
<th>ECN</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>2616863</td>
<td>JHU/AESA</td>
<td>01/07/2009</td>
<td>New application note.</td>
</tr>
<tr>
<td>*A</td>
<td>3197603</td>
<td>SSHH</td>
<td>03/16/2011</td>
<td>Changed the default compiler to Image craft from Hi-tech in the PSoC Designer setting.</td>
</tr>
</tbody>
</table>

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and CapSense are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone: 408-943-2600
Fax: 408-943-4730
http://www.cypress.com/