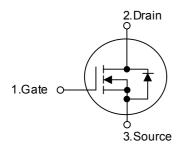


UNISONIC TECHNOLOGIES CO., LTD

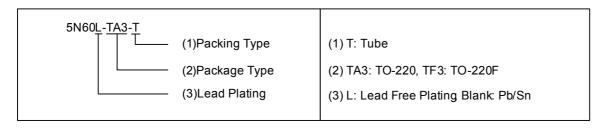
5N60 **Power MOSFET**

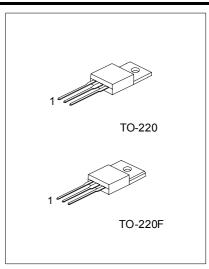
4.5 Amps, 600 Volts N-CHANNEL MOSFET


DESCRIPTION

The UTC 5N60 is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES


- * $R_{DS(ON)} = 2.5\Omega @V_{GS} = 10 \text{ V}$
- * Ultra low gate charge (typical 15 nC)
- * Low reverse transfer Capacitance (C_{RSS} = typical 6.5 pF)
- * Fast switching capability
- * Avalanche energy Specified
- * Improved dv/dt capability, high ruggedness


SYMBOL

ORDERING INFORMATION

Order Number		Dookogo	Pin Assignment			Dooking	
Normal	Lead Free Plating	Package	1	2	3	Packing	
5N60-TA3-T	5N60L-TA3-T	TO-220	G	D	S	Tube	
5N60-TF3-T	5N60L-TF3-T	TO-220F	G	D	S	Tube	

*Pb-free plating product number: 5N60L

■ ABSOLUTE MAXIMUM RATING (T_C = 25 unless otherwise specified)

PARAMETER			SYMBOL	RATINGS	UNIT
Drain-Source Voltage			V _{DSS}	600	V
Gate-Source Voltage			V_{GSS}	±30	V
Avalanche Current (Note 1)			I _{AR}	4.5	Α
Continuous Drain Current		$T_{\rm C} = 25$		4.5	Α
		$T_C = 100$		2.6	Α
Pulsed Drain Current (Note 1)			I _{DM}	18	Α
Avalanche Energy, Single Pulsed (Note 2)			E _{AS}	210	mJ
Avalanche Energy, Repetitive Limited by T _{J(MAX)}			E _{AR}	10	mJ
Peak Diode Recovery dv/dt (Note 3)			dv/dt	4.5	V/ns
Power Dissipation	T _C = 25		0	100	W
	Derate above 25		P _D	0.8	W/
Junction Temperature			TJ	+150	
Operating and Storage Temperature			T _{STG}	-55 ~ +150	·

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction-to-Ambient	θ_{JA}	62.5	°C/W
Junction-to-Case	θ_{JC}	1.25	°C/W
Case-to-Sink	$\theta_{ ext{CS}}$	0.5	°C/W

■ ELECTRICAL CHARACTERISTICS (T_C = 25 unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Off Characteristics							
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	600			V
Drain-Source Leakage Current			V _{DS} =600V, V _{GS} = 0V			1	μΑ
		I _{DSS}	V _{DS} =480V, T _C = 125			10	μΑ
Breakdown Voltage Temperature		BV _{DSS} /	L =250uA Deferenced to 25		0.6		V/
Coefficient		T_J	I _D =250μA, Referenced to 25		0.6		V/
Gate-Body Leakage Current	Forward	lana	V_{GS} =30V, V_{DS} = 0V			100	nΑ
Gate-Body Leakage Current	Reverse	I _{GSS}	V_{GS} =-30V, V_{DS} = 0V			-100	nΑ
On Characteristics							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-Resistance		R _{DS(ON)}	V_{GS} =10V, I_{D} = 2.25A		2.0	2.5	Ω
Forward Transconductance		g FS	V_{DS} =40V, I_{D} = 2.25A (Note 4)		4.7		S
Dynamic Characteristics							
Input Capacitance		C _{ISS}	$V_{DS} = 25V, V_{GS} = 0V,$		515	670	pF
Output Capacitance		Coss	f = 1.0MHz		55	72	pF
Reverse Transfer Capacitance		C _{RSS}	1 - 1.01/11/12		6.5	8.5	pF
Switching Characteristics							
Turn-On	Delay Time	$t_{D(ON)}$			10	30	ns
Turn-On	Rise Time	t_R	$V_{DD} = 300V, I_D = 4.5 A,$		42	90	ns
Turn-Off	Delay Time	t _{D(OFF)}	$R_G = 25\Omega \text{ (Note 4, 5)}$		38	85	ns
	Fall Time	t _F			46	100	ns
Total Gate Charge		Q_G	V_{DS} = 480 V, I_{D} = 4.5A,		15	19	nC
Gate-Source Charge		Q_GS	$V_{\text{DS}} = 460 \text{ V}, I_{\text{D}} = 4.5\text{A},$ $V_{\text{GS}} = 10 \text{ V} \text{ (Note 4, 5)}$		2.5		nC
Gate-Drain Charge		Q_GD	VGS - 10 V (NOIE 4, 3)		6.6		nC

5N60 Power MOSFET

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Drain-Source Diode Characteristics and Maximum Ratings								
Drain-Source Diode Forward Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 4.5 \text{ A}$			1.4	V		
Maximum Continuous Drain-Source Diode Forward Current	Is				4.5	Α		
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}				18	Α		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, I_S = 4.5 \text{ A},$		300		ns		
Reverse Recovery Charge	Q_{RR}	d _{IF} / dt = 100 A/µs (Note 4)		2.2		μC		

Note 1. Repetitive Rating : Pulse width limited by T_J

- 2. L = 18.9mH, I_{AS} = 4.5 A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25
- 3. $I_{SD} \le 4.5A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25$
- 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%
- 5. Essentially independent of operating temperature

■ TEST CIRCUITS AND WAVEFORMS

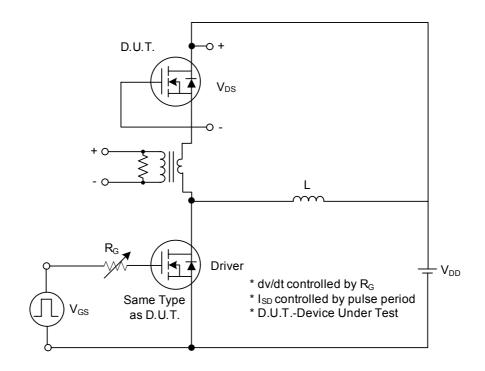


Fig. 1A Peak Diode Recovery dv/dt Test Circuit

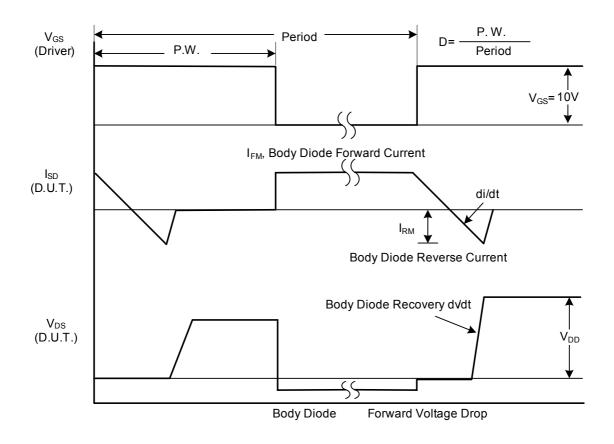
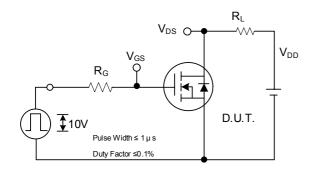



Fig. 1B Peak Diode Recovery dv/dt Waveforms

5N60 Power MOSFET

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

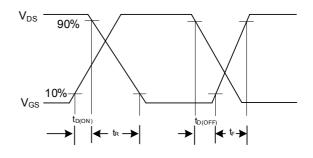
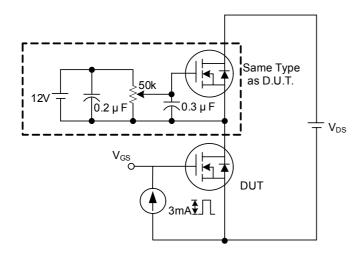



Fig. 2A Switching Test Circuit

Fig. 2B Switching Waveforms

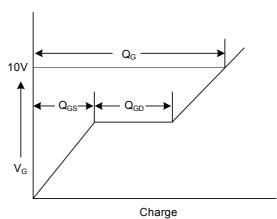
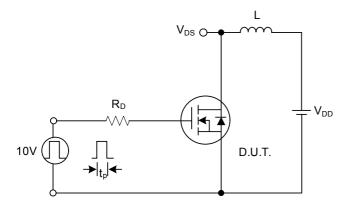



Fig. 3A Gate Charge Test Circuit

Fig. 3B Gate Charge Waveform

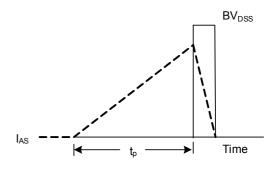
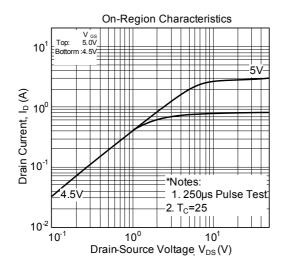
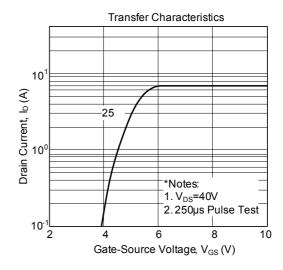
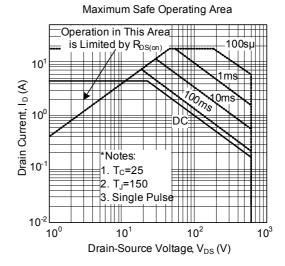





Fig. 4A Unclamped Inductive Switching Test Circuit


Fig. 4B Unclamped Inductive Switching Waveforms

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.