

DESIGN OF IMPLEMENTATION OF A COMPATIBLE KEYBOARD
CONTROLLER FOR KEYBOARDS AND MICE

Ying-Wen Bai and Hsiu-Chen Chen
Department of Electronic Engineering, Fu Jen Catholic University

Taipei, Taiwan, 242, R.O.C.,
bai@ee.fju.edu.tw

ABSTRACT
By integration of the basic functions of both a standard
keyboard controller and the key matrix of a scan code, we
provide a compatible design for both keyboards and mice.
The key matrix of a scan code consists of 16 output pins
by 8 input pins, which can support up to 128 keys.
Usually, we can build a matrix table based on the
mapping relationship between the column and the row of
a ROM/RAM. If we store the mapping relationship in the
Table of an RAM chip, then we can re-download the table
content at run time by means of the commands of either
BIOS or the various applications. Hence, we can gain
more flexibility and compatibility by means of firmware
setting. We can also use the multiple sets of the matrix
table pre-stored in a ROM chip. The multiple sets of the
matrix table are selected by the command from BIOS.
Although this selection method may require more ROM
space, 128KB ROM can support a sufficient number of
sets of the matrix table to thus provide a feasible solution
for a design which is compatible for a keyboard controller.

KEY WORDS
Keyboard Controller (KBC), Firmware, Keyboard (KBD),
Mouse

1. Introduction

The keyboard controller (KBC) is one of I/O devices
between a keyboard and a PC. The KBC was
implemented by 8255 in an early design of a PC/XT. At
that time the mouse was connected through a RS232
interface by using a COM Port via IRQ3/IRQ4. In 1987
IBM proposed the Personal System/2 hardware interface,
by which a PS/2 keyboard (KBD) and a PS/2 mouse both
shared Port “64h” and Port “60h” I/O channel with the
8042 KBC, therefore, increasing the IRQ1 for the KBD
scan code input and added IRQ12 for mouse data packet
input. Table I shows a KBC comparison between the AT
compatible mode and the PS/2 compatible mode [1-4].

TABLE I
KBC COMPARISON BETWEEN THE AT COMPATIBLE MODE AND THE

PS/2 COMPATIBLE MODE [1-4].
Port Name AT-compatible mode PS/2-compatible mode Port P10 Undefined Keyboard Data

P11 Undefined Mouse Data
P12 Undefined Undefined
P13 Undefined Undefined
P14 External RAM (GA20) External RAM (GA20)
P15 Manufacturer’s Setting Manufacturer’s Setting
P16 Display Type Switch Display Type Switch

P17 Keyboard Inhibit Switch Keyboard Inhibit Switch
P20 Reset CPU Reset CPU
P21 Gate A20 Gate A20
P22 Undefined Mouse Data
P23 Undefined Mouse Clock
P24 Input Buffer Full (IBF) Keyboard IBF interrupt
P25 Output Buffer Empty Mouse IBF interrupt
P26 Keyboard Clock Keyboard Clock

Port 2 (O
utput Port)

P27 Keyboard Data Keyboard Data
T0 Keyboard Clock (Input) Keyboard Clock (Input)

P3

T1 Keyboard Data (Input) Mouse Clock (Input)

Fig. 1 shows the standard 8042 KBC architecture, in
which the I/O address “64h” is the Command Port and
“60h” is the Data Port. The PC system bus reads Port
“64h” to get the KBC Status Register, and reads Port
“60h” to obtain the KBD/mouse data.

PC
System

Bus

Input
Buffer

Control
Regiser

Output
Port

Input
Port

Output
Buffer

 Status
Register

60h

64h

60h

64h

Key
bo

ard

Mou
se

Keyboard Controller

(PS/2 only)

Fig. 1 Standard 8042 KBC architecture

Tables II and III show the type and feature list of the PS/2
KBD type and the PS/2 mouse respectively.

TABLE II
PS/2 KBD TYPE AND FEATURE LIST [1-4].

Keyboard Type Feature
IBM PC/XT
KBD (1981)

• 83 Keys
• 5-pin DIN connector
• Simple un-bidirectional serial protocol
• Uses what we now refer to as code set 1
• No host-to-keyboard commands

517-102 298

bryson

IBM AT KBD
(1984) – Not
backward
compatible with
XT systems.

• 84~101 Keys
• 5-pin DIN connector
• Bi-directional serial protocol
• Uses what we now refer to as code set 2
• 8 host-to-keyboard commands

IBM PS/2 KBD
(1978) –
compatible with
AT system.

• 84 ~ 101 Keys
• 6-pin mini-DIN connector
• Bi-directional serial protocol
• Offers optional scan code set 3
• 17 host-to-keyboard commands

Modern AT-
PS/2 compatible
KBD

• Any number of keys (usually 101 or 104 Keys)
• 5-pin/6-pin DIN connector (adaptor usually
included)
• Bi-directional serial protocol
• Only scan code set 2 guaranteed
• Acknowledges all commands; may not act on
all of them

TABLE III

PS/2 MOUSE TYPE AND FEATURE LIST [1-4].
Mouse Type Features
Standard PS/2 Mouse • 3-byte data packet

• ID = 00h
• Doesn’t need any command sequence
to initial

Microsoft Intelligent
Mouse (Scrolling wheel
+ 3 buttons)

• 4-byte data packet
• ID = 03h
• Command sequence:
Set sample rate 200
Set sample rate 100
Set sample rate 80

Microsoft Intelligent
Mouse (Scrolling wheel
+ 5 buttons)

• 4-byte data packet
• ID = 04h
• Command sequence:
Set sample rate 200
Set sample rate 200
Set sample rate 80

2. KBC, KBD and Mouse Compatible Design

In this paper, we focus on a compatible design for the
integration of a KBC, a KBD and a mouse, such as an
8042 KBC compatible design, together with a PS/2
keyboard compatible design as shown in Fig. 4 including
power management key support, Windows 2000 key and
Internet key support.

Fig. 4 KBC Architecture for portable computers

2.1 Dual PS/2 Keyboard and dual PS/2 Mouse
compatible design

Usually, the KBC chip of the portable computer will
support 3 channels of the PS/2 Port. The first one is for
the touch pad, the second one is for the PS/2 KBD
(external KBD) and the third one is for the PS/2 mouse
(external mouse). There is a dual design for the PS/2
KBD (internal and external) and also dual PS/2 mouse
(internal and external) supports. When either a dual PS/2
KBD or a dual PS/2 mouse coexists, the external PS/2
devices will have a higher priority.

The compatible design for the standard 8042 KBC
includes the following basic functions:
1. Standard KBC command set supported
2. Gate “A20” for high memory supported.
3. Reset CPU supported.
4. System flag for cold boot/warm boot supported.
5. PS/2 keyboard and IRQ1 supported.
6. PS/2 mouse and IRQ12 supported.

In a portable computer, the key matrix emulates a PS/2
KBD, which provides an internal KBD including the
following functions:
1. Standard keyboard command set support
2. Based on IBM 101/102 keyboard specification
3. Standard 84-key, 101-key, 104-key keyboard support
4. Both scan code set 1 and set 2 support
5. ACPI power management key support

- Power key
- Sleep key
- Wake key

6. Windows 2000 key and Internet key support
- Volume up key
- Volume down key
- Next track key
- Previous track key
- Stop key
- Play/Pause key
- Media select key
- Email reader key
- Turn on calculator key
- Turn on my computer key
- WWW keys

7. Function (Fn) key and function hotkey support

Because the “key matrix” is composed of a 16 (output pin)
* 8 (input pin), it can support 128 keys. Usually, the
designer will build a “matrix table” in a ROM/RAM chip
according to the combination of the column and the row
of the key matrix. If the matrix table is stored in a RAM
chip, the system will use BIOS or application commands
during the run time to re-download the matrix tables to
thus accomplish the necessary compatibility for the
different matrix tables. If the matrix tables are stored in a
ROM chip, then the BIOS will select one of the matrix
tables when the system is turned on. This implementation
requires more ROM space. Usually, the ROM size is
around 64KB/128KB, which includes most of matrix

299

tables from many designs.

Table IV shows an example of a matrix table, by using
scan code set 2, in which “BFh” represents none, “00h”
represents beep, 01h~7F represents general scan codes,
and above “80h” represents special keys such as, W2K
keys and Internet keys.

TABLE IV
EXAMPLE OF A MATRIX TABLE, BY USING SCAN CODE SET 2

Offset 0Xh 1Xh 2Xh 3Xh 4Xh 5Xh 6Xh 7Xh
X0h BF BF 1C 1B 23 2B 3B 4B
X1h 42 4C 5D 69 72 7A 96 BF
X2h BF BF BF BF BF 32 31 BF
X3h BF 4A 29 C1 93 7B 91 BF
X4h C7 85 1A 22 21 2A 3A 49
X5h 41 BF F1 9A 94 7C 89 BF
X6h BF BF 16 1E 26 25 3D 44
X7h 43 4D BF 6C 75 7D 79 BF
X8h BF 16 1E 26 25 3D 46 BF
X9h 3E 45 09 CB D1 8F 8E BF
XAh C6 BF 0E D3 D4 2E 36 0A
XBh 55 4E 01 8D 8A 8C 8B BF
XCh BF 80 0D 58 04 2C 35 83
XDh 5B 54 66 6B 73 74 BF BF
XEh BF BF 76 BF 0C 34 33 BF
XFh 0B 52 03 BF 70 71 C0 BF

Usually, for a notebook design, we can support the
keyboard for multiple countries. When the BIOS executes
the “post” procedure, the “COMMAND” will select the
corresponding 128-byte for the specific country code and
transfer it from ROM into the matrix table in the RAM.
When the users press a specific matrix key, the
corresponding row and column location will map into the
matrix table in the RAM, and then the system will obtain
the corresponding scan code and send the scan code to the
computer through channel IRQ1.

Output
Port

Input Port

Ghost Key

Fig. 5 An example of the generation of the “Ghost Key”

In addition, the compound keys which are pressed by
three keys in a keyboard are often used. Due to the circuit
characteristics, when the three keys are located at a
perpendicular triangle, the fourth key at a corresponding
angle can be a valid key due to the voltage drop. The
fourth keys are called “ghost keys” which shall be
avoided by dislocating the hardware location such as,
“Alt”, “Ctrl”, “Shift” and “Fn”. However, for the common

characters, the dislocating methods only exchange the
different character. For example, if the user presses the
“A”, “S and “Q” keys, the screen may display “A”, “S”,
“Q”, and “W4” characters. To avoid these ghost keys, we
provide specific hardware and software solutions as
follows.

(1) Hardware solutions for the avoiding “ghost key” are
as shown in Fig. 6, by using an extra resistor or diode, or
even by using a voltage comparator in the input terminal
of the scan matrix to avoid any “ghost key” confusions.
However, the hardware solution can increase the cost of
the keyboard design.

Input Port

Output
Port

Fig. 6 A hardware solution for avoiding the ghost key

(2) A software solution for the avoiding “ghost key” is to
check the combination of the row and column from the
matrix scanning. If the three keys are in a perpendicular
triangular, then the third key and the fourth key will be
ignored.

Check Keybuff when any
key is pressed

If 2 keys are in
one row?

Yes

If 2 keys are in one
column?

Yes

Move BFh (invaild) instead of
the 3rd key and the 4th key in

Keybuff

Exit

No

No

Fig. 7 A software solution for avoiding the ghost key

Usually, the KBC chip of a portable computer supports 3
channels of the PS/2 port. The first one supports the touch
pad, or an internal mouse. The second and third support
an external KBD and a second external mouse; however,
they can support two KBDs or two mice simultaneously.
If the users choose to use two KBDs or two mice
simultaneously, then the KBC will be controlled by the

300

O.S. under a specific driver with a special supporting
command set.

In addition, the external PS/2 ports also support to the
Hot-Plug and the Hot-Swap function as shown in Figure 8
and Figure 9. With the system power on and the PS/2
device plugged in, the self-test success and the PS/2
device will automatically generate a BAT code to KBC.
The KBD’s BAT code can be AAh and the mouse’s BAT
code can be “AAH + 00h” for the mouse ID. When the
KBC has received “AAh”, the system notices that an
external PS/2 device is plugged in and the KBC will send
an “ECh” command to the external PS/2 device, and the
external PS/2 device will respond “FAh” (ACK) to KBC.
We learn the device is a mouse. However, if the response
is “FEh”, the plugged in device is a KBD. After the
plugged device is classified, the KBC will send an “F1h”
command once each second to test the validation for both
the KBD and the mouse to the external PS/2 device. If the
KBC can get a response (FEh) that means the PS/2 device
is still connected. If there is no response from the PS/2
device, then the KBC will generate a timeout interrupt.

When the Port Status
is attached, and check
if it is still attached at

1 per second.

Send a invaild Cmd (F1h)
to the Ext. PS/2 device

If timeout?
(20msec)

Yes

This Ext. PS/2 device is
plugged-out.

Exit

This Ext. PS/2 device is
still plugged-in.

Yes

Response 'FE' ?

No

No

Fig. 8 Hot-plug detected flowchart

When the Port Status
is not attached, but

received a 'AA' from
this port

Send a Mouse Cmd (ECh)
to the Ext. PS/2 device

Response 'FA'
(Ack) ?

Yes

This Ext. PS/2 device is a
Mouse.

Exit

This Ext. PS/2 device is
a KBD.

No

Fig. 9 A Hot-swap detected flowchart

2.2 A PS/2 Mouse compatible design

Currently, there are two major the mouse design types.
The first one is the standard PS/2 mouse (3 Byte Data
Packet; ID = 00) and the second one is the Intelligent 3D
mouse (4 Byte Data Packet; ID = 03h or 04h). For our
compatible design, we need to support the 3-byte mouse
and the 4-byte mouse simultaneously. Tables V, VI and
VII show a PS/2 mouse data packet, a 3D mouse with 3-
button data packet respectively.

TABLE V
THE DATA PACKET OF A STANDARD PS/2 MOUSE

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Byte1 Y_O X_O Y_S X_S 1 M_B R_B L_B

Byte2 X Movement

Byte3 Y Movement

Y_O: Y overflow bit
X_O: X overflow bit
Y_S: Y sign bit
X_S: X sign bit
M_B: Middle Button State
R_B: Right Button State
L_B: Left Button State

TABLE VI
THE DATA PACKET OF A 3D MOUSE WITH 3-BUTTON

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Byte1 Y_O X_O Y_S X_S 1 M_B R_B L_B

Byte2 X Movement

Byte3 Y Movement

Byte4 Z Movement

TABLE VII

THE DATA PACKET OF A 3D MOUSE WITH 5-BUTTON
 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Byte1 Y_O X_O Y_S X_S 1 M_B R_B L_B

Byte2 X Movement

Byte3 Y Movement

Byte4 0 0 5_B 4_B Z3 Z2 Z1 Z0

Z0 ~ Z3: Z Movement
4_B: The 4th Button State
5_B: The 5th Button State

To transform a 3-byte data packet into a 4-byte data
packet as in Fig. 10, the KBC reads the data packet from
the PS/2 mouse and tests to see if the 3D mouse exists. If
the response is “yes”, the KBC then checks to see if the
data is from the 3D mouse. If the received data is not a 3-
byte data packet, then the KBC will automatically send
out a virtual byte (00h) to the system bus and form a 4-
byte data format. Hence, the KBC can support both the
PS/2 mouse and the Intelligent 3D mouse.

301

Data Byte
from PS/2 Mouse

From 3D Mouse?

The 3th byte of
data packet?

 No

Yes

Send the 4th byte 00h to
the System

Yes

Return

No

Fig. 10 The flowchart for the 3D mouse emulation

3. The Architecture of the KBC ROM
Design

Usually, the flash ROM design of the KBC can be
classified into three categories:
(1) On-chip flash ROM architecture as shown in Fig. 11
(2) Share BIOS flash ROM architecture as shown in Fig.
12
(3) Build-in BIOS ROM architecture as shown in Fig. 13

By using the design of the “Share BIOS flash ROM”, the
KBC image is combined with the BIOS image. Both the
KBC image and the BIOS image share the same flash
ROM, which, currently, uses 4MB/512KB. If the code
size of the KBC occupies more space, then the code size
of BIOS can share less space. Therefore, the assembly
version (56 Kbytes) of KBC code can be lower in the cost
in comparison with C language version of KBC code (96
Kbytes).

To reduce the development time of the KBC code, the
vendor would normally like to use C programming
language. However, the code size of the C version can
cause the chip size to increase from 512 Kbytes to 1024
Kbytes, which increases the cost. To balance the cost and
the development time, we design a compromise
architecture that provides the standard code which
includes the device polling program for the
KBC/KBD/Mouse compatible programs which is occupy
the code size 30KB by using Assembly programming
language. This design provides a hook interface to the C
programming language. This hook interface can provide
the OEM vendors with a way to design their custom
features by using C programming language.

RAM (2KB)

ROM

(FLASH MEMORY)

(64KB/128KB)

KBC Chip (with built-in ROM)

Fig. 11 On-chip flash ROM (single-chip) architecture

RAM (2KB)

KBC Chip (without ROM)

Mask ROM
(Boot Block)

(4KB)

Share ROM
Interface

South
Bridge

FLASH
MEMORY

(1MB)

LPC Bus

LPC LPC LPC

Fig. 12 Share-BIOS ROM architecture

RAM (2KB)

KBC Chip (with FLASH MEMOEY)

Mask ROM
(Boot Block)

(4KB)

Share ROM
Interface

South
Bridge

FLASH
MEMORY

(1MB)

LPC Bus

LPC LPC LPC

SPI

Fig. 13 Built-in BIOS ROM architecture

3.1 Support different flash ROM types

Usually, the flash ROM has two types: “boot-mode” and
“on-board flash”. When the flash ROM is empty or the
flash fails, we must use the “boot-mode” and the external
serial port to connect to another computer with can
execute a flash utility, download the flash control
program into RAM and execute it for
erasing/programming flash ROM and to calculate the
checksum if the downloading is correct or not. The other
type is “on-board flash” by which the program in the flash
ROM is complete and can execute. During the
development or firmware update phase, we boot the
system to a DOS mode; we use flash utility (or
application) with a specific flash command to complete
the flash ROM programming.

For the KBC “On-chip ROM architecture”, the flash
utility execute the command, by means of “on board
flash” or through the serial port based on the boot mode
flash. We download the flash control program to the

302

specific RAM block; then the “program counter” will be
set to a specific address and start the execution of the
KBC programming.

For the KBC “Share-ROM architecture”, when the system
want to update flash ROM, the KBC must switch into
“idle mode” until the completion of the updating or the
KBC jumps to the loop in the RAM while updating and
finishing the flash ROM, and use the specific command to
wake up the KBC or exit the loop program.

3.2 The compatible design of the boot block

During the procedure of the flash ROM, the flash failure
can stop the notebook booting procedure. Hence, we
provide the boot block mechanism, which separates the
KBC ROM into two parts and preserves 4Kbytes for the
use of the boot block. When the KBC is turned on, the
boot block will be executed the check checksum and the
signature in main-program, if the KBC operation is
correct, then either the system will jump to the main
program, or else the system will stay in the looping of the
boot block.

When the system is turned on, it will send the self-test
command (AAh) to the KBC. If the KBC response is
“55h”, then the KBC is normal. If the system receives an
“F1h” response from the KBC, then the main program of
the KBC need to be re-flashing and the BIOS will execute
the specific program to re-flash the KBC ROM. To
provide the re-flash function, the BIOS ROM needs to
pre-store the image of the KBC into the BIOS ROM. This
image only include some of the functions of the boot
block such as, power management, the checking functions
and the response of the system commands of the main
program which does not need too much space of the KBC
ROM.

To avoid including the KBC image in the BIOS, we also
propose another design, which expands the space of the
boot block from 8Kbytes to 10 Kbytes in order to boot the
DOS mode. Then, the system loads the KBC image from
a disk or portable memory by using the flash utility in
order to finish the re-flash function without increasing the
BIOS load. This design may not support any PS/2 devices
initially. However, the KBD need to response to the
command from the system, otherwise, the system may
recognize the KBD initial failure during the post
procedure. If the system recognizes the KBD initial
failure, it will disable IRQ1. When the system boots to the
DOS mode and IRQ1is disabled, the USB KBD won’t
work.

In addition, the boot block prevents any flash failure
during the design and development procedure and then
saves one much time to maintain the system. Moreover,

the end-users can re-download a new KBC image and
flash utility through the Internet from the notebook
vendors. Even the system has a flash failure; the new
KBC image can be downloaded used to turn on to the
system by the firmware updating without sending the
notebook back to the vendor for this service.

4. Conclusion

To obtain our compatible design, we need to provide both
the basic functions of the KBC and a RAM/ROM built in
table for the keyboard type transformation from the input
of the key matrix. If we implement the transformation
relation in a RAM chip, we need to design a command
from either BIOS or the applications to re-download the
mapping table. If we implement the transformation
relation in a ROM chip, the system requires a larger
amount of ROM for the multiple selections for the
different keyboard types. In addition, to increase the
compatibility of the different mouse data standards, we
also design the transformation from a 3-byte data packet
to a 4-byte data packet, so that the KBC can support both
the PS/2 mouse and the Intelligent 3D mouse.

Although the USB keyboard and mouse have been
designed by polling USB controllers, before the operating
system has booted or while the operating system is under
DOS mode, as the USB driver hasn’t started, the USB
keyboard and mouse, therefore, can’t work. Usually, this
problem can be solved by using either the “64h” or “60h”
I/O Port emulation.

References

 [1] Adam Chapweske, The PS/2 Mouse/Keyboard
Protocol, http://www.Computer-Engineering.org, May.
2003.

[2] Adam Chapweske, The AT-PS/2 Keyboard Interface,
http://www.Computer-Engineering.org, 2001.

[3] Adam Chapweske, The PS/2 Mouse Interface,
http://www.Computer-Engineering.org, 2001.

[4] R. A. Dayan, J. D. Rutledge, PS/2 mouse architecture
type 1 and 2 (IBM Corporation, Jun. 1996).

[5] Hans-Peter Messmer, The indispensable PC hardware
book: your hardware questions answered (Addison-
Wesley, second edition, 1995).

[6] Intel Corporation, LaGrande Technology Trusted
Mobile Keyboard Controller (Rev. 0.95b, Nov. 2004).

303

