

LD7537 12/15/2011

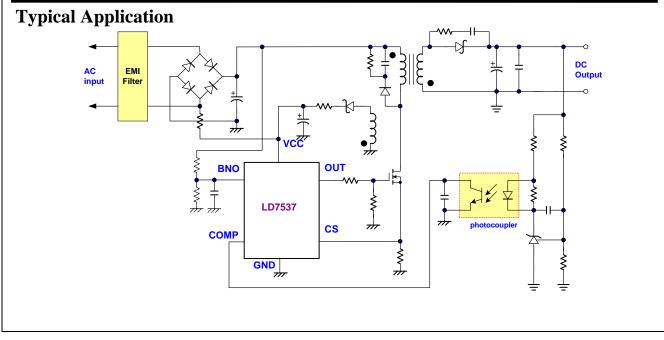
Green-Mode PWM Controller with Frequency Swapping and Integrated Protections

Rev. 01a

General Description

The LD7537 is built-in with several functions, protection and EMI-improved solution in a tiny package. It takes less components counts or circuit space, especially ideal for those total solutions of low cost.

The implemented functions include low startup current, green-mode power-saving operation, leading-edge blanking of the current sensing and internal slope compensation. It also features more protections like OLP (Over Load Protection) and OVP (Over Voltage Protection) to prevent circuit damage occurred under abnormal conditions.


Furthermore, the Frequency Swapping function is to reduce the noise level and thus helps the power circuit designers to easily deal with the EMI filter design by spending minimum amount of component cost and developing time.

Features

- High-Voltage CMOS Process with Excellent ESD
 protection
- Very Low Startup Current (<20μA)
- Current Mode Control
- Green Mode Control
- UVLO (Under Voltage Lockout)
- LEB (Leading-Edge Blanking) on CS Pin
- Internal Frequency Swapping
- Internal Slope Compensation
- OVP (Over Voltage Protection) on Vcc Pin
- Brownout Protection
- OLP (Over Load Protection)
- 300mA Driving Capability

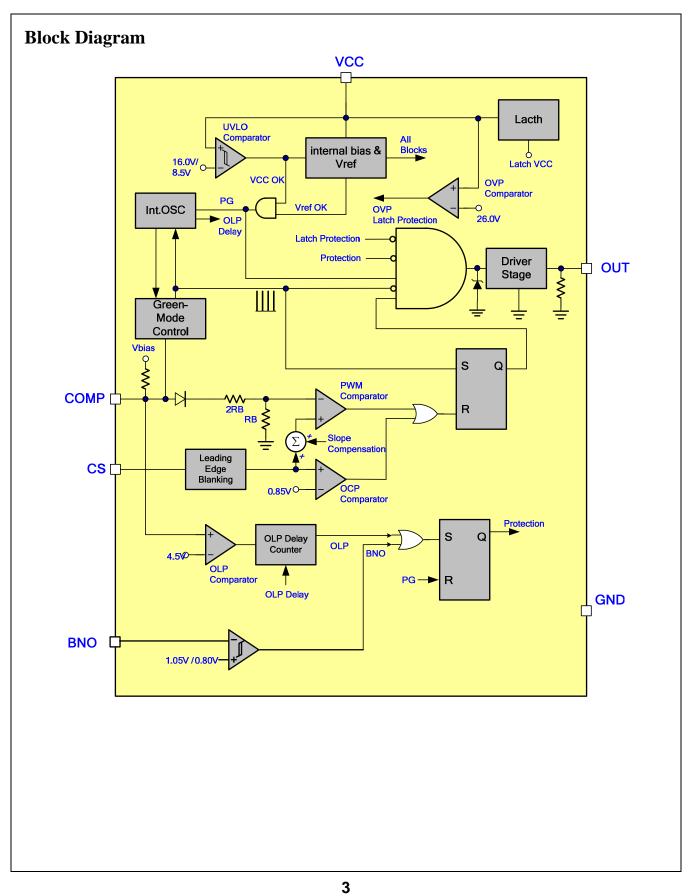
Applications

- Switching AC/DC Adaptor and Battery Charger
- Open Frame Switching Power Supply

Pin Configuration SOT-26 (TOP VIEW) DIP-8 (TOP VIEW) COMP NC BNO GND OUT VCC CS F 8 7 6 5 — 4 5 TOP MARK pp YYWWPP ⊢ 1 2 3 4 GND COMP BNO VCC C S C OUT YY, Y : Year code (D: 2004, E: 2005....) WW, W: Week code PP : Production code : LD7537 P37 **Ordering Information**

Part numberPackageTop MarkShippingLD7537GLSOT-26Green PackageYWP/373000 /tape & reelLD7537GNDIP-8Green PackageLD7537GN3600 /tube /Carton

The LD7537GL is ROHS compliant.


Protection Mode

Switching Freq.	VCC OVP	OLP	BNO Pin
65kHz	Latch	Auto recovery/ 65ms	Auto recovery

Pin Descriptions

SOT-26	DIP-8	NAME	FUNCTION
1	8	GND	Ground
2	7	COMP	Voltage feedback pin (same as the COMP pin in UC384X). Connect a photo-coupler to close the control loop and achieve the regulation.
3	5	BNO	Brownout Protection Pin. Connect a resistor divider between this pin and bulk capacitor voltage to set the brownout level. If the voltage is less than threshold voltage, the PWM output will be disabled.
4	4	CS	Current sense pin, connect it to sense the MOSFET current
5	2	VCC	Supply voltage pin
6	1	OUT	Gate drive output to drive the external MOSFET

Absolute Maximum Ratings

Supply Voltage VCC	-0.3V ~29V
COMP, BNO, CS	-0.3V ~6V
OUT	-0.3V ~Vcc+0.3V
Maximum Junction Temperature	150°C
Operating Ambient Temperature	-40°C to 85°C
Operating Junction Temperature	-40°C to 125°C
Storage Temperature Range	-65°C to 150°C
Package Thermal Resistance (SOT-26, θ _{JA})	250°C/W
Package Thermal Resistance (DIP-8, θ_{JA})	100°C/W
Power Dissipation (SOT-26)	250mW
Power Dissipation (DIP-8)	650mW
Lead temperature (Soldering, 10sec)	260°C
ESD Voltage Protection, Human Body Model	2.5 KV
ESD Voltage Protection, Machine Model	250 V
Gate Output Current	300mA

Caution:

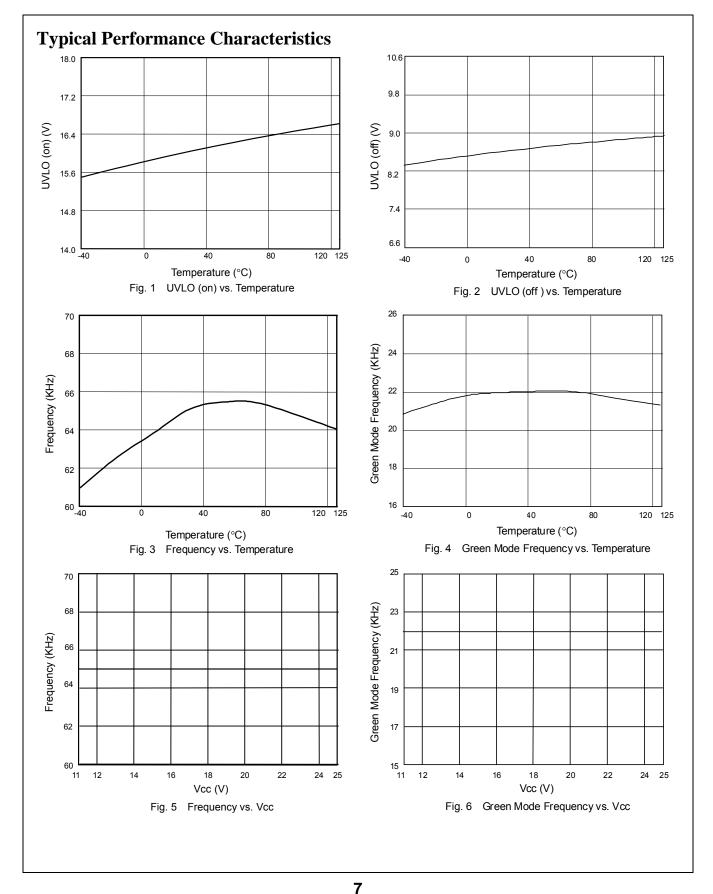
Stresses beyond the ratings specified in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

4

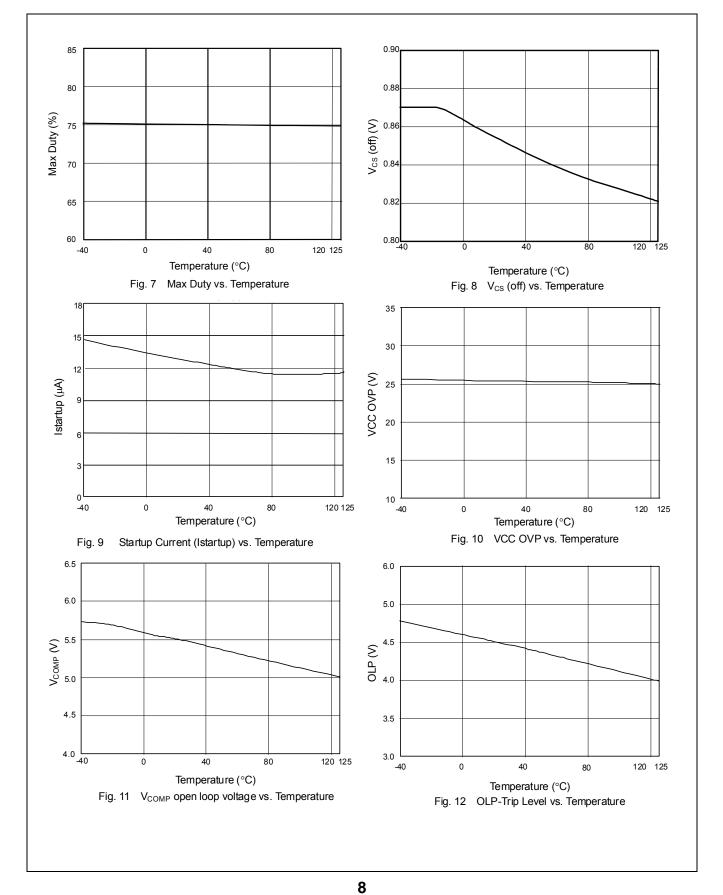
Recommended Operating Conditions

ltem	Min.	Max.	Unit
Supply Voltage Vcc	10	24	V
Start-up resistor Value	540K	1.8M	Ω

Electrical Characteristics

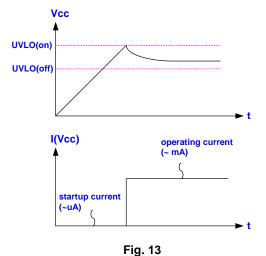

(T_A = +25°C unless otherwise stated, V_{CC}=15.0V)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage (Vcc Pin)					
Startup Current			12	20	μA
	V _{COMP} =0V		1.0		mA
Operating Current	V _{COMP} =3V		2.0		mA
(with 1nF load on OUT pin)	OLP Tripped/ Auto		0.47		mA
	OVP Tripped /Latch		0.85		mA
Holding Current	Vcc=7V (latched)		430		μA
UVLO (off)		7.5	8.5	9.5	V
UVLO (on)		15	16	17	V
OVP Level		25	26	27	V
Voltage Feedback (Comp Pin)					
Short Circuit Current	V _{COMP} =0V		0.25		mA
Open Loop Voltage	COMP pin open		5.4		V
Green Mode Threshold VCOMP			2.4		V
Zero Duty Threshold VCOMP			1.5		V
Zero Duty Hysteresis			100		mV
Current Sensing (CS Pin)					
Maximum Input Voltage, V _{CS_OFF}		0.8	0.85	0.9	V
Leading Edge Blanking Time			230		ns
Internal Slope Compensation	0% to D_{MAX} . (Linearly increase)		300		mV
Input impedance		1			MΩ
Delay to Output			100		ns
Oscillator for Switching Frequency	/				
Frequency, FREQ		60	65	70	kHz
Green Mode Frequency, FREQG			22		kHz
Trembling Frequency			± 4.0		kHz
Temp. Stability	(-20°C ~85°C)		5		%
Voltage Stability	(VCC=11V-25V)			1	%



PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate Drive Output (OUT Pin)		i			
Output Low Level	VCC=15V, Io=20mA			1	V
Output High Level	VCC=15V, Io=20mA	8			V
Output High Clamp Level	V _{CC} =20V		16		V
Rising Time	Load Capacitance=1000pF		170	350	ns
Falling Time	Load Capacitance=1000pF		50	100	ns
Max. Duty			75		%
OLP (Over Load Protection)					
OLP Trip Level		4.3	4.5	4.7	V
OLP Delay Time		55	65	75	ms
Brownout Protection (BNO Pin)			·		
Brownout Turn-On Trip Level		1.00	1.05	1.10	V
Brownout Turn-Off Trip Level		0.75	0.80	0.85	V
BNO Pin De-bounce Time			250		us
On Chip OTP (Over Temperature	.)				
OTP Level			140		°C
OTP Hysteresis			30		°C
Soft Start Duration					
Soft Start Duration			2		ms

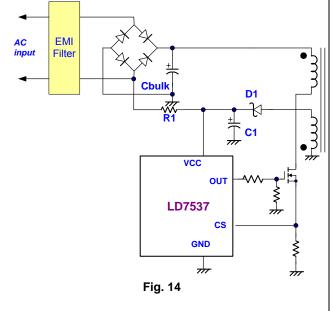
Leadtrend Technology Corporation www.leadtrend.com.tw LD7537-DS-01a December 2011


Application Information

Operation Overview

The LD7537 meets the green-power requirement and is intended for the use in those modern switching power suppliers and adaptors which demand higher power efficiency and power-saving. It integrated more functions to reduce the external components counts and the size. Its major features are described as below.

Under Voltage Lockout (UVLO)


An UVLO comparator is implemented in it to detect the voltage on the VCC pin. It would assure the supply voltage enough to turn on the LD7537 PWM controller and further to drive the power MOSFET. As shown in Fig. 13, a hysteresis is built in to prevent the shutdown from the voltage dip during startup. The turn-on and turn-off threshold level are set at 16.0V and 8.5V, respectively.

Startup Current and Startup Circuit

The typical startup circuit to generate V_{CC} of the LD7537 is shown in Fig. 14. During the startup transient, the V_{CC} is below UVLO threshold. Before it has sufficient voltage to develop OUT pulse to drive the power MOSFET, R1 will provide the startup current to charge the capacitor C1. Once V_{CC} obtains enough voltage to turn on the LD7537 and further to deliver the gate drive signal, it will enable the auxiliary winding of the transformer to provide supply current. Lower startup current requirement on the PWM controller will help to increase the value of R1 and then reduce the power consumption on R1. By using CMOS process and the special circuit design, the maximum startup current for LD7537 is only 20μ A.

If a higher resistance value of the R1 is chosen, it will usually take more time to start up. To carefully select the value of R1 and C1 will optimize the power consumption and startup time.

Current Sensing and Leading-edge Blanking

The typical current mode of PWM controller feedbacks both current signal and voltage signal to close the control loop and achieve regulation. As shown in Fig. 15, the LD7537 detects the primary MOSFET current from the CS pin, which is not only for the peak current mode control but also for the pulse-by-pulse current limit. The maximum voltage threshold of the current sensing pin is set at 0.85V. From above, the MOSFET peak current can be obtained from below.

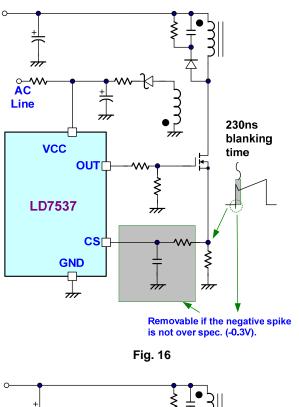
$$I_{PEAK(MAX)} = \frac{0.85V}{R_S}$$

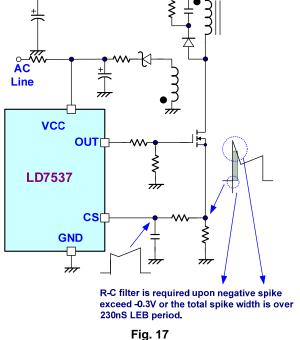
A 230nS leading-edge blanking (LEB) time is included in the input of CS pin to prevent the false-trigger from the current spike. In the low power applications, if the total pulse width of the turn-on spikes is less than 230nS and the negative spike on the CS pin below -0.3V, the R-C filter is free to eliminate. (As shown in Fig.16).

However, the total pulse width of the turn-on spike is determined according to output power, circuit design and PCB layout. It is strongly recommended to adopt a smaller R-C filter (as shown in Fig. 17) for larger power application to avoid the CS pin being damaged by the negative turn-on spike.

Output Stage and Maximum Duty-Cycle

An output stage of a CMOS buffer, with typical 300mA driving capability, is incorporated to drive a power MOSFET directly. And the maximum duty-cycle of LD7537 is limited to 75% to avoid the transformer saturation.


Voltage Feedback Loop


The voltage feedback signal is provided from the TL431 at the secondary side through the photo-coupler to the COMP pin of the LD7537. Similar to UC3842, the LD7537 would carry a diode voltage offset at the stage to feed the voltage divider at the ratio of RA and RB, that is,

 $V_{-(PWM_{COMPARATOR})} = \frac{RB}{RA + RB} \times (V_{COMP} - V_F)$

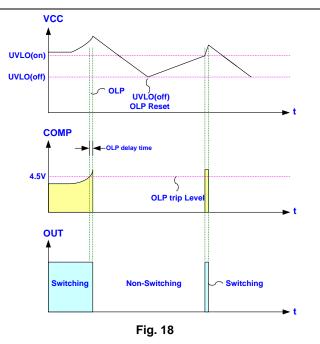
A pull-high resistor is embedded internally and can be eliminated externally.

LD7537

10

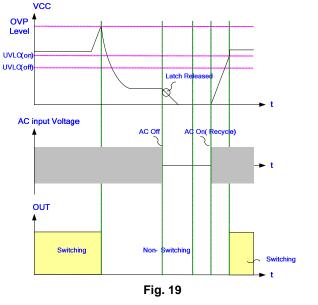
Internal Slope Compensation

In the conventional applications, the problem of the stability is a critical issue for current mode controlling, when it operates over 50% duty-cycle. As UC384X, It takes slope compensation from injecting the ramp signal of the RT/CT pin through a coupling capacitor. It therefore requires no extra design for the LD7537 since it has integrated it already.


On/Off Control

The LD7537 can be turned off by pulling COMP pin lower than 1.5V. The gate output pin of the LD7537 will be disabled immediately under such condition. The off-mode can be released when the pull-low signal is removed.

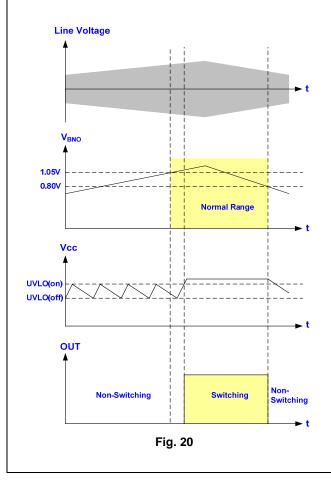
Over Load Protection (OLP) - Auto Recovery


To protect the circuit from damage due to over-load condition and short or open-loop condition, the LD7537 is implemented with smart OLP function. It also features auto recovery function; see Fig. 18 for the waveform. In case of fault condition, the feedback system will force the voltage loop toward the saturation and then pull the voltage high on COMP pin (VCOMP). When the V_{COMP} ramps up to the OLP threshold of 4.5V and continues over OLP delay time, the protection will be activated and then turn off the gate output to stop the switching of power circuit.

With the protection mechanism, the average input power will be minimized to remain the component temperature and stress within the safe operating area.

OVP (Over Voltage Protection) on Vcc - Latch mode

The Vcc OVP functions of LD7537 are latch mode. Whenever the voltage on the Vcc pin is higher than the OVP threshold, the output gate drive circuit will be shutdown simultaneous to latch off the switching of the power MOSFET. As soon as the voltage on Vcc pin drops below OVP threshold and starts AC-recycling again, it will recover to normal operation. Figure 19 shows its operation.



11

Brownout Protection

The LD7537 programmable to set the brownout protection point though BNO pin. The voltage across the BNO pin is proportional to the bulk capacitor voltage, referred as the line voltage. A brownout comparator is implemented to detect the abnormal line condition. As soon as the condition is detected, it will shut down the controller to prevent the damage. Figure 20 shows the operation. When VBNO falls below 0.80V, the gate output will be kept off even Vcc has already achieved UVLO(ON). It therefore makes Vcc hiccup between UVLO(ON) and UVLO(OFF). Unless the line voltage is large enough to pull VBNO larger than 1.05V, the gate output will not start switching even when the next UVLO(ON) is tripped. A hysteresis is implemented to prevent the false trigger during turn-on and turn-off. Figure 20 shows the circuit.

Oscillator and Switching Frequency

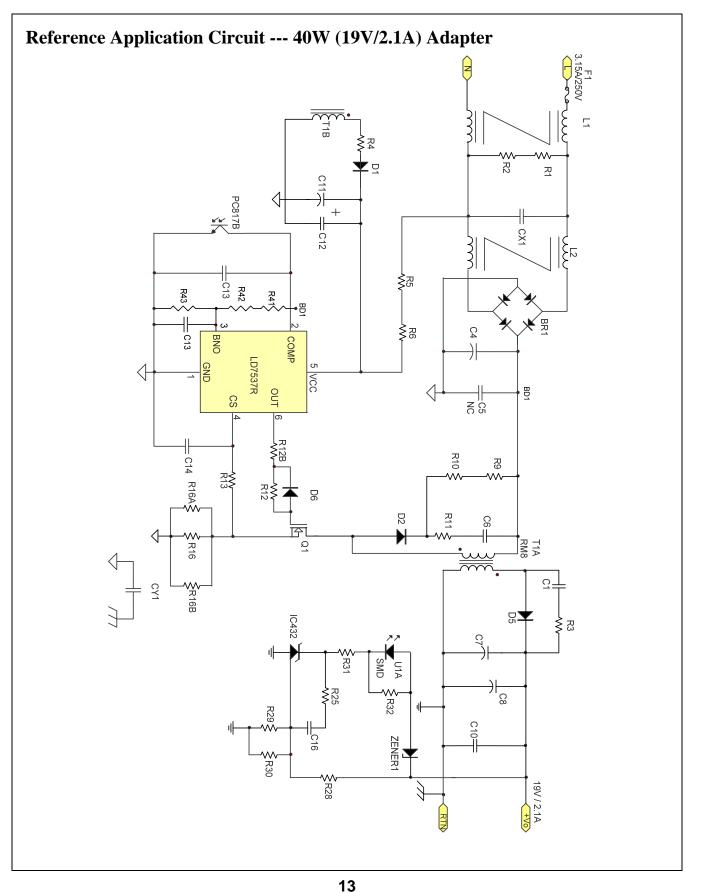
The LD537 is implemented with Frequency Swapping function which helps the power supply designers to both optimize EMI performance and lower system cost. The switching frequency substantially centers at 65KHz, and swap between a range of \pm 4KHz.

Green-Mode Operation

By using the green-mode control, the switching frequency can be reduced under the light load condition. This feature helps to improve the efficiency in light load conditions. The green-mode control is Leadtrend Technology's own property.

Fault Protection

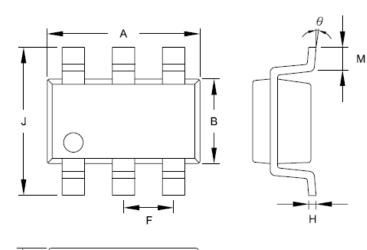
There are several critical protections integrated in the LD7537 to prevent from damage to the power supply. Those damages usually come from open or short conditions on the pins of LD7537.

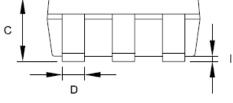

In case under such conditions listed below, the gate output will turn off immediately to protect the power circuit.

1. CS pin floating

12

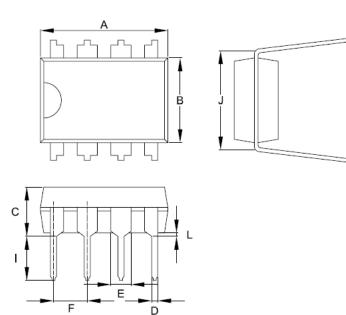
2. COMP pin floating





Package Information

SOT-26



Symbol	Dimension in Millimeters		Dimensions in Inches	
Gymbol	Min	Max	Min	Max
А	2.692	3.099	0.106	0.122
В	1.397	1.803	0.055	0.071
С		1.450		0.057
D	0.300	0.500	0.012	0.020
F	0.95 TYP		0.037 TYP	
н	0.080	0.254	0.003	0.010
I	0.050	0.150	0.002	0.006
J	2.600	3.000	0.102	0.118
М	0.300	0.600	0.012	0.024
θ	0°	10°	0°	10°

Package Information

DIP-8

Symbol	Dimension in Millimeters		Dimensions in Inches	
Gymbol	Min	Мах	Min	Max
А	9.017	10.160	0.355	0.400
В	6.096	7.112	0.240	0.280
С		5.334		0.210
D	0.356	0.584	0.014	0.023
E	1.143	1.778	0.045	0.070
F	2.337	2.743	0.092	0.108
I	2.921	3.556	0.115	0.140
J	7.366	8.255	0.29	0.325
L	0.381		0.015	

Important Notice

Leadtrend Technology Corp. reserves the right to make changes or corrections to its products at any time without notice. Customers should verify the datasheets are current and complete before placing order.

Revision History

Rev.	Date	Change Notice	
00	5/11/2010	riginal Specification	
01	11/16/2010	Pin Assignment: OTP→BNO	
01a	12/15/2011	OLP Delay Time (min.) (max.)	
		Operating Ambient Temperature (min.)	

16