Schottky Barrier Diode Quads for Double Balanced Mixers

Technical Data

Features

- Small Size

Eases Broad Band Designs

- Tight Match Improves Mixer Balance
- Improved Balance over Temperature
- Rugged Design

Description/Applications

This matched diode quad uses a monolithic array of Schottky diodes interconnected in ring configuration. The relative proximity of the diode junction on the wafer assures uniform electrical characteristics and temperature tracking.

These diodes are designed for use in double balanced mixers, phase detectors, AM modulators, and pulse modulators requiring wideband operation and small size. the low barrier diodes allow for optimum mixer noise figure at lower than conventional local oscillator levels. the wider dynamic range of the medium barrier diodes allows for better distortion performance.

Note: For new designs, the HSMS-820X series of surface mount microwave diodes are recommended.

Outline E4

$\mathrm{C}_{\mathrm{P}}=0.07 \mathrm{pF}$ diagonal $\mathrm{C}_{\mathrm{P}}=0.09 \mathrm{pF}$ adjacent

Maximum Ratings

Operating and Storage Temperature Range
E4
\qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DC Power Dissipation \qquad 75 mW per Juction
Derated linearly to zero at maximum rated temperatures (measured in infinite heat sink at $T_{C A S E}=25^{\circ} \mathrm{C}$).
Soldering Temperature
E4 \qquad $220^{\circ} \mathrm{C}$ for 10 sec

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Electrical Specifications at $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Typical
Parameters

Part Number 5082-	Package	Barrier	$\begin{gathered} \text { Maximum } \\ \text { Capacitance } \\ \mathbf{C}_{\mathrm{M}}(\mathrm{pF}) \end{gathered}$	Maximum Measured Capacitance Difference $\Delta \mathrm{C}_{\mathrm{M}}(\mathrm{pF})$	$\underset{\mathbf{V}_{\mathbf{F}}}{\text { Maximum }}$ Difference $\Delta \mathbf{V}_{\mathrm{F}}(\mathrm{mV})$	Maximum Dynamic Resistance $\mathbf{R}_{\mathrm{D}}(\Omega)$	Forward Voltage V_{F} (V)
2830	E4	Medium	0.5 Typ.	0.20	20	12	0.40
Test Conditions			$\begin{gathered} \mathrm{V}_{\mathrm{R}}=0 \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$		$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ between Adjacent Leads		$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$ Measured between Adjacent Leads

Package Characteristics

The HP outline E4 package is designed for MIC, Microstrip, and Stripline use from dc through C-Band. The leads provide a good continuity of transmission line impedance to the monolithic diode array. The leads are tin plated copper.

Dynamic and Series Resistance

Schottky diode resistance may be expressed as series resistance, R_{S}, or as dynamic ressitance, R_{D}.
These two terms are related by the equation

$$
R_{D}=R_{S}=R_{j}
$$

where R_{j} is the resistance of the junction. Junction resistance of a diode with DC bias is quite accurately calculated by

$$
R_{j}=26 / I_{B}
$$

SPICE Parameters

Parameter	Units	5082-2830
B_{V}	V	10
$\mathrm{C}_{\mathrm{J} 0}$	pF	4
E_{G}	eV	0.69
I_{BV}	A	$10 \mathrm{E}-5$
I_{S}	A	$2 \times 10 \mathrm{E}-10$
N		1.08
R_{S}	Ω	6
P_{B}	V	0.65
P_{T}		2
M		0.5

where I_{B} is the bias current in milliamperes. The series resistance is independent of current.

The dynamic resistance is more easily measured. If series resistance is specified, it is usually obtained by subtracting the calculated junction resistance from the measured dynamic resistance.

Quad Capacitance

Capacitance of Schottky diode quads is measured using an HP4271 LCR meter. This instrument effectively isolates individual diode branches from the others, allowing accurate capacitance measurement of each branch or each diode. The conditions are: 20 mV R.M.S. voltage at 1 MHz . HP defines this measurement as "CM", and it is equivalent to the capacitance of the diode by itself. The equivalent diagonal and adjacent capacitances can then be
calculated by the formulas given below.

In a quad, the diagonal capacitance is the capacitance between points A and B as shown in figure below. The diagonal capacitance is calculated using the following formula

$$
\mathrm{C}_{\text {DIAGONAL }}=\frac{\mathrm{C}_{1} \times \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}+\frac{\mathrm{C}_{3} \times \mathrm{C}_{4}}{\mathrm{C}_{3}+\mathrm{C}_{4}}
$$

The equivalent adjacent capacitance is the capacitance between points A and C in figure below. This capacitance is calculated using the following formula

$$
\mathrm{C}_{\text {ADJACENT }}=\mathrm{C}_{1}+\frac{1}{\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\frac{1}{\mathrm{C}_{4}}}
$$

