MIXIM

31/2 Digit A/D Converter

- ◆ Guaranteed Overload Recovery Time
- ◆ Significantly Improved ESD Protection (Note 7)
- ◆ Low Noise

- ♦ Key Parameters Guaranteed over Temperature
- ◆ Negligible Hysteresis
- ◆ Maxim Quality and Reliability
- ◆ Increased Maximum Rating for Input Current (Note 8)

ABSOLUTE MAXIMUM RATINGS: This device conforms to the Absolute Maximum Ratings on adjacent page.

ELECTRICAL CHARACTERISTICS: Specifications below satisfy or exceed all "tested" parameters on adjacent page.

(V $^+$ = 9V; T_A = 25°C; f_{CLOCK} = 48kHz; test circuit - Figure 1; unless noted)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading	$V_{ N} = 0.0V$, Full Scale = 200.0mV $T_A = 25^{\circ}C$ (Note 6) $0^{\circ} \le T_A \le 70^{\circ}C$ (Note 10)	-000.0 - 000.0	± 000.0 ± 000.0	+ 000.0 + 000.0	Digital Reading
Ratiometric Reading	$V_{IN} = V_{REF}, V_{REF} = 100 \text{mV}$ $T_A = 25^{\circ}\text{C (Note 6)}$ $0^{\circ} \le T_A \le 70^{\circ}\text{C (Note 10)}$	999 998	999/1000 999/1000	1000 1 001	Digital Reading
Rollover Error (Difference in reading for equal positive and negative reading near Full Scale)	$-V_{IN} = +V_{IN} \approx 200.0 \text{mV}$ $T_A = 25^{\circ}\text{C (Note 6)}$ $0^{\circ} \leq T_A < 70^{\circ}\text{C (Note 10)}$	-1	±.2 ±.2	+1	Counts
Linearity (Max. deviation from best straight line fit)	Full Scale = 200.0mV or full scale = 2.000V	-1	±.2	+1	Counts
Common Mode Rejection Ratio	$V_{CM} = \pm 1V$, $V_{IN} = 0V$ Full Scale = 200.0mV		50		μ V /V
Noise (Pk-Pk value not exceeded 95% of time)	V _{IN} = 0V Full Scale = 200.0mV		15		μV
Input Leakage Current	$V_{1N} = 0$ $T_A = 25^{\circ}C \text{ (Note 6)}$ $0^{\circ} \le T_A \le 70^{\circ}C$		1 20	10 200	pA
Zero Reading Drift	V _{IN} = 0 0° ≤ T _A ≤ 70°C (Note 6)		0.2	1	μV/°C
Scale Factor Temperature Coefficient	$V_{IN} = 199.0 \text{mV}$ $0^{\circ} \le T_A \le 70^{\circ}\text{C}$ (Ext. Ref. 0ppm/°C) (Note 6)		1	5	ppm/°C
V ⁺ Supply Current (Does not include LED current for 7107)	$V_{IN} = 0$ $T_A = 25^{\circ}C$ $0^{\circ} \le T_A \le 70^{\circ}C$		0.6	1.8	mA
V - Supply Current (7107 only)			0.6	1.8	mA
Analog Common Voltage (with respect to Pos. Supply)	25kΩ between Common & Pos. Supply	2.4	2.8	3.2	V
Temp. Coeff. of Analog Common (with respect to Pos. Supply)	25kΩ between Common & Pos. Supply		75		ppm/°C
7106 Only (Note 5) Pk-Pk Segment Drive Voltage, Pk-Pk Backplane Drive Voltage	V+ to V- = 9V	4	5	6	V
7107 Only—Segment Sinking Current (Except Pin 19) (Pin 19 only)	V ⁺ = 5.0V Segment Voltage = 3V	5	8.0 16		mA mA
7106 Only—Test Pin Voltage	With Respect to V+	4	5	6	V
Overload Recovery Time (Note 9)	V _{IN} changing from ± 10V to 0V		0	1	Measurement Cycles

Note 6: Test condition is V_{IN} applied between pin IH-HI and IN-LO through a $1M\Omega$ series resistor as shown in Figures 1 and 2.

Note 7: All pins are designed to withstand electrostatic discharge (ESD) levels in excess of 2000V. (Test circuit per Mil Std 883, Method 3015.1)

Note 8: Input voltages may exceed the supply voltage provided the input current is limited to ±1mA (This revises Note 1 on adjacent page).

Note 9: Number of measurement cycles for display to give accurate reading.

Note 10: 1M Ω resistor is removed in Figures 1 and 2.