HYBRID INTEGRATED CIRCUIT VHF/UHF WIDE-BAND AMPLIFIER

Two-stage wide-band amplifier in hybrid integrated circuit technique on a thin-film substrate, intended for RATV and MATV applications.

QUICK REFERENCE DATA

D.C. supply voltage	VB	=	12	V ± 10%
Frequency range	f	40 1	to 860	MHz
Source and load (characteristic) impedance	$R_s = R_{\ell} = Z_0$	=	75	Ω
Transducer gain	$G_{tr} = s_f ^2$	typ.	18	dB
Flatness of frequency response	± Δ s _f ²	typ.	1	dB
Output voltage at -60 dB intermodulation distortion (DIN 45004, 3-tone)	Vo(rms)	typ.	100	dΒμV
Noise figure	F	typ.	6	dB
Operating ambient temperature	T_{amb}	-20 to	+ 70	оС

ENCAPSULATION 5-pin, in-line, resin-coated body, see MECHANICAL DATA (Fig. 2)

Fig. 1 Circuit diagram.

RATINGS

Limiting values in accordance with the Al	bsolute Maximum System (IEC 134)
---	----------------------------------

Limiting values in accordance with the Apsolute Maxima	in System (IEC 134	,		
Operating ambient temperature	T _{amb}	-20 to	+ 70	οС
Storage temperature	T _{stg}	-40 to +	125	οС
D.C. supply voltage	VΒ	max.	15	V
Peak incident powers on pins 1 and 5	P _{I1M} , P _{I5M}	max.	100	mW
CHARACTERISTICS				
Measuring conditions				
Ambient temperature	T _{amb}	=	25	oC
D.C. supply voltage	v _B	=	12	٧
Source impedance and load impedance	R _s , Rℓ	=	75	Ω
Characteristic impedance of h.f. connections	Zo	=	75	Ω
Frequency range	f	= 40 to	860	MHz
Performance				
Supply current	1 _B	typ.	18	mA
Transducer gain	$G_{tr} = s_f ^2$	typ.	18	dB
Flatness of frequency response	± \(\sigma \ sf 2	typ.	1	dB
Individual maximum v.s.w.r.				
input	VSWR _(i)	typ.	1,5	
output	VSWR (o)	typ.	1,9	*
Back attenuation f = 100 MHz	10 12	***	20	dB
f = 860 MHz	S _r ² S _r ²	typ. typ.		dB
Output voltage	° r	typ.	23	ab
at -60 dB intermodulation distortion				
(DIN 45004, par. 6.3: 3-tone)	Vo(rms)	typ.	100	dΒμV
Noise figure	F	typ.	6	dB

s-parameters: $s_f = s_{21}$ $s_i = s_{11}$ $s_r = s_{12}$ $s_o = s_{22}$

^{*} Highest value, for a sample, occuring in the frequency range.

Dimensions in mm

OPERATING CONDITIONS

Ambient temperature range	T_{amb}	–20 to + 70 °C
D.C. supply voltage	v_B	= 12 V ± 10%
Frequency range	f	40 to 860 MHz
Source impedance and load impedance	R _s , R _ℓ	= 75 Ω

MECHANICAL DATA

The device is resin coated.

Terminal connections

1 = input 2,3,4 = common 5 = output/supply(+)

Soldering recommendations

Hand soldering

Maximum contact time for a soldering-iron temperature of 260 °C up to the seating plane is 5 s.

Dip or wave soldering

260 °C is the maximum permissible temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted against the printed-circuit board, but the temperature of the device must not exceed 125 °C. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature below the allowable limit.

Mounting recommendations

The module should preferably be mounted on double-sided printed-circuit board, see the example shown below.

Input and output should be connected to 75 Ω tracks.

The connections to the 'common' pins should be as close to the seating plane as possible.

Fig. 3 Printed-circuit board holes and tracks.

Fig. 4 Transducer gain as a function of frequency; $Z_0 = 75 \Omega$.

176 December 1980

Fig. 5 Input impedance derived from input reflection coefficient s_i , co-ordinates in ohm x 75; typical values.

Fig. 6 Output impedance derived from output reflection coefficient s₀, co-ordinates in ohm x 75; typical values.

Fig. 7 Output voltage and supply current as a function of the supply voltage; typical values.

Fig. 8 Variation of transducer gain with supply voltage; reference 0 dB at 12 V:

---- f = 500 MHz;

---- f = 100 MHz;

----- f = 860 MHz;

typical values.

178 December 1980