

MAXLINEAR

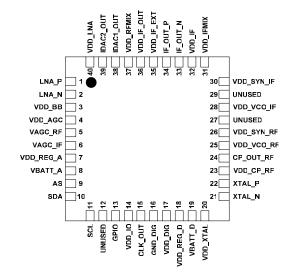
MxL5003S DIGITAL SILICON IC TUNER

General Description

The MxL5003S is an integrated tuner IC, which meets the specifications of digital (DVB-T, DVB-H, ISDB-T 13-seg, ATSC, and 64/256-QAM) TV standards. It enables a manufacturer to design a TV tuner module with a small footprint, low bill-of-materials cost, and low power consumption.

The tuner IC can be configured through I²C interface to change modes for receiving different standards. It takes an input from a 75 Ω antenna or cable and produces a programmable channel-selected IF output up to 57MHz. Gain control, LO generation, and channel selectivity functions are completely integrated on the chip, which simplifies board-level design. The nominal power supply is 1.8V. If 1.8V supply is not available, an on-chip regulator can provide the 1.8V supply from a 2.3V to 3.6V supply.

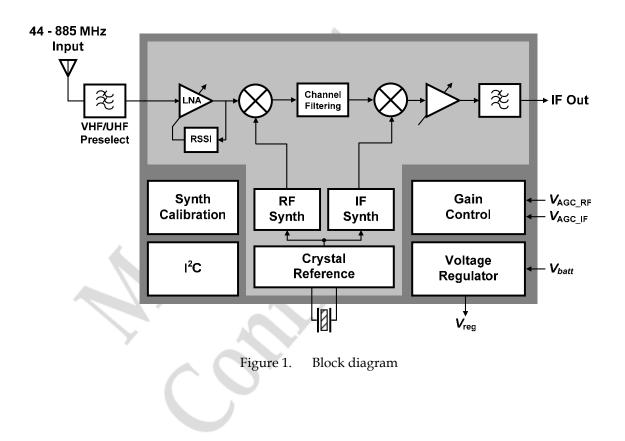
The MxL5003S is available in a 6 x 6 mm² 40-pin QFN package. Other package options are available.


Applications

- High-performance DVB-T, DVB-H, ISDB-T 13-seg, ATSC, and 64/246-QAM television receivers
- Flat-screen TVs with low power and small form-factor requirements such as LCD monitors
- Portable applications such as laptops, automobiles, portable DVD players
- Handheld applications such as cellular phones and PDAs

Features

- Implemented in CMOS 0.18µm process
- Tuning range from 44 to 885 MHz
- Integrated channel filtering requiring no external SAW filters
- On-chip 75 dB AGC with single AGC
 - ▶ 57 dB RF and 32 dB IF with dual AGC
 - On-chip RSSI with single AGC
- Low power consumption
 > 165 mA typical (UHF mode)
 - Programmable IF from low to high IF
 - Flexible support for different demodulator requirements
- Programmable channel bandwidths from 6, 7, and 8MHz
- Programmable IF spectrum inversion
- Clock output available to drive demodulator to save crystal components
- On-chip regulator voltage input 2.3-3.6V
 Can be bypassed with 1.8V supply
- I²C-compatible digital interface
- Compatible to additional off-chip LNA to reduce NF, and to increase gain and gain range


Pin Configuration

IC Block Diagram

The proprietary architecture of the tuner is illustrated in the functional block diagram of Fig. 1. The chip utilizes a proprietary architecture, which achieves the required channel selection using a multistage channel filter. The RF input is first mixed to a fixed frequency, then after channel filtering it is mixed to a programmable IF frequency. Anti-alias filtering after 2nd mixing stage removes any out-ofband harmonics. A tunable IF LO allows for programmable IF frequencies. Automatic gain control is distributed throughout the signal path for optimum noise and linearity performance. In single-AGC mode, VAGC_RF controls both the RF and IF gain. An RSSI block can be enabled to detect the LNA output and automatically adjusts the gain of the LNA. In dual-AGC mode, VAGC_RF and VAGC_IF control the RF and IF gain. An on-chip regulator regulates the battery voltage to the internal supply of 1.8V. An optional off-chip VHF/UHF pre-select filter eliminates strong blockers above the UHF band.

Pin Description

Pin Names

Pin #	Pin Name	Pin #	Pin Name
1	LNA_P	21	XTAL_N
2	LNA_N	22	XTAL_P
3	VDD_BB	23	VDD_CP_RF
4	VDD_AGC	24	CP_OUT_RF
5	VAGC_RF	25	VDD_VCO_RF
6	VAGC_IF	26	VDD_SYN_RF
7	VDD_REG_A	27	UNUSED
8	VBATT_A	28	VDD_VCO_IF
9	AS	29	UNUSED
10	SDA	30	VDD_SYN_IF
11	SCL	31	VDD_IF_MIX
12	UNUSED	32	VDD_IF
13	GPIO	33	IF_OUT_N
14	VDD_IO	34	IF_OUT_P
15	CLK_OUT	35	VDD_IF_EXT
16	GND_DIG	36	VDD_IF_OUT
17	VDD_DIG	37	VDD_RFMIX
18	VDD_REG_D	38	IDAC1_OUT
19	VBATT_D	39	IDAC2_OUT
20	VDD_XTAL	40	VDD_LNA

RF Interface

Two pins are provided for RF input. Nominally only one pin is required. An optional pin is provided for a balanced input and improved linearity.

	-	
Pin Name	Direction	Description
LNA_N	Input	Tuner input with input impedance of 75 Ω
LNA_P	Input	Optional input pin for differential drive
LNA_P	Input	Optional input pin for differential drive

I²C Interface

This chip provides I²C compatible interface.

Pin Name	Direction	Description			
SCL	Input	Clock			
SDA	Bidir	Pull-down data pin			
AS	Input	Address selection			

Supply and Ground

This chip contains an on-chip regulator that regulates the battery voltage to nominally 1.8V on-chip operation.

Pin Name	Direction	Description			
VDD_NAME	Input	Supply voltage for on-chip circuits			
VDD_IF_EXT	Input	Supply voltage for biasing up IF output. Connects to			
		external supply for IF output.			
VBATT_A	Input	Supply voltage input for on-chip analog regulator			
VBATT_D	Input	Supply voltage input for on-chip digital regulator			
VDD_REG_A	Output	Supply voltage output from analog regulator			
VDD_REG_D	Output	Supply voltage output from digital regulator			
VDD_IO	Input	Supply voltage input for I/O interface			
GND_DIG	Input	Ground for digital circuit blocks			

Analog and Digital I/O

Pin Name	Direction	Description
IF_OUT_P	Output	Open-drain IF output
IF_OUT_N	Output	Open-drain IF output
VAGC_RF	Input	Automatic gain control for RF section. In single-AGC mode, this pin controls both the RF and IF gain. The partitioning is controlled on-chip.
VAGC_IF	Input	Automatic gain control for IF section. In single-AGC mode, this pin is not used.
XTAL_P	Input	Crystal positive input. It can be used as an external system clock input pin if no crystal is used
XTAL_N	Input	Crystal negative input
CP_OUT_RF	Output	RF PLL charge pump output for external loop filter
IDAC1_OUT	Output	General purpose DAC current output, controlled by I2C
IDAC2_OUT	Output	General purpose DAC current output, controlled by I2C
CLK_OUT	Output	Xtal oscillator divide-by-one or by-four clock output for demodulator
GPIO	Output	General purpose digital IO, controlled by I2C. This pin can sink or source current at VDD_IO voltage.

Specifications

Absolute Maximum Ratings

Parameter	Min	Max	Units
VBATT_A	0	3.6	V
VBATT_D	0	3.6	V
VDD_IF_EXT	0	3.6	V
VDD_IO	0	3.6	V
All other VDD_NAME	0	2.0	V
SDA, SCL	0	3.6	V
AS	0	2.0	V
Storage Temp	-65	150	° C
Junction Temp		150	° C
Soldering Temp		260	° C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device above these, or any other conditions beyond those "recommended" is not implied. Exposure to conditions above those "recommended" for extended periods of time may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Units
Analog/Digital Supply	VDD	1.7	1.8	1.9	V
Battery Supply	VBATT	2.3	2.8	3.3	V
External VDD Supply for IF	VDD_IF_EXT	2.7	2.8	3.3	V
Outputs (single-ended 200 Ω		$\nabla \mathcal{R}$			
pull-up resistors)					
AGC Control	VAGC_RF/IF	0		2.4	V
I/O Supply	VDD_IO	1.6	1.8	3.6	V
Address Select	AS	0		1.9	
Operating Temperature	Т	-30	25	85	° C

Tuner General Specifications

(Digital Mode, IF = 4.57MHz)

Parameter	Symbol	Min	Typical	Max	Units		
System							
Input Return Loss 75 Ω system	S ₁₁	8	10		dB		
RF frequency range	f _{RF}	44		885	MHz		
Channel spacing		6	7	8	MHz		
Desired Input Signal Range		-76		0	dBm		
without off-chip LNA (appendix 2)							
Maximum Voltage Gain (appendix 1)	G _{max}	72	80	88	dB		
Gain Control Range (single AGC,	AGC	77	80		dB		
see appendix 3)							
RF Gain Control Range (dual AGC)	RFAGC	53	57		dB		
IF Gain Control Range (dual AGC)	IFAGC	30	32		dB		
Noise Figure	NF		8.5	13.0	dB		

Input-Referre	d Spurs (gain=50 dB)			-1	10	dBµV
Output 1dB C	Compress	ion	OP _{1dB}	120	123		dBuV
3rd-order Adj	acent Cha	nnel	IIP3	-16.0	-10		dBm
Intermod Inte							
	adjacent channel, at gain=50 dB) (see						
appendix 3)	0						
3 rd -order In-b				-18.0	-16.0		dBm
Intercept (gai	n=50 dB)	(appendix 3)					
RF Harmonic	Rejection	1 3 rd , 5 th , 7 th	HRR		-65	-60	dBc
Ratio ($D/U =$	0 dB)	9 th			-60	-50	dBc
IF LO	gai	n =0 – 50 dB	DCOS		-60	-50	dBc
Feedthrough		n = 50 dB to			-40	-30	dBc
Rejection	0	xgain					
(appendix 3)		0					
I/Q Imbalanc		,	IQI		-55	-50	dBc
IF Output (rn						102	dBµV
Single-Ended		1					
Resistors (des	sired IF or	ut)					
IF harmonic s		on (LIF and		50			dB
36.17 MHz or	nly)						
		(Channel Se	elect Filter			
Baseband Filt	er Band	BW=6 MHz	FBE	NA	2.80	NA	MHz
Edge Frequer	ncy	BW=7 MHz		NA	3.33	NA	MHz
Definiton		BW=8 MHz	1	NA	3.80	NA	MHz
Group Delay	Across	BW=6 MHz	GD		500	600	ns
+/- Band Edg	ge	BW=7 MHz			500	600	ns
_		BW=8 MHz			500	600	ns
Droop Across	Band	BW=6 MHz	DRP			3	dB
Edge		BW=7 MHz				3	dB
0		BW=8 MHz				3	dB
Attenuation	BW= 6	Picture		43	52		dB
of adjacent	MHz	(4.25 MHz)					
analog		Sound		10	12		dB
channel	y.	(3.25 MHz)					
(measured at	BW= 7	Picture		40	44		dB
offset from center of band)	MHz	(4.75 MHz)					
center of balluj		Sound		7	9		dB
		(3.75 MHz)					
	BW= 8	Picture		40	42		dB
	MHz	(5.25 MHz)					
		Sound		21	24		dB
		(4.75 MHz)					
			Synthe	esizer			
Phase Noise	at 1	kHz Offset			-89	-86	dBc/Hz
	at 10	kHz Offset			-92	-89	dBc/Hz
	at 10	0 kHz Offset			-101	-97	dBc/Hz
PLL Settling			TS		150	200	μs
System powe			TP		5	7	ms
bystem power up time				1	1		1

Current Consumption

Para	ameter	Min	Typical	Max	Units
Current (IF = 4.57	RF=50 - 300 MHz	170	175	195	mA
MHz)	RF=300 - 900 MHz	160	165	185	mA

The current consumption accounts for temperature and process variations.

Crystal Requirements

A fundamental mode crystal in a low-profile SMD package is recommended to reduce component count and form factor. The default crystal frequency used is 16 MHz. This chip is flexible to accommodate other crystal frequencies needed for most demodulators.

Parameter	Min	Typical	Max	Units
Frequency Range	16	48	32	MHz
ESR		50	100	Ω
Static Capacitance		7		pF
Frequency accuracy		+/-30		ppm
Temperature Stability		+/-50		ppm

The following crystal frequencies are supported for proper channel tuning with exceptions of in-band spurs in certain crystal frequencies.

Frequency Supported	In-b	Units		
(MHz)	Min	Typical	Max	
16.0			-61	dBc
20.48		-36	TBD	dBc
20.5		-36	TBD	dBc
26.057		-36	TBD	dBc
27.0			-61	dBc
32.513		-36	TBD	dBc

IF Frequencies Supported

	Digital			
	Low IF	Standard IF	Bandwidth	Comment
	(MHz)	(MHz)	(MHz)	
ISDBT	4.063	57.0	6	For 13-segment
DVB-T	4.57	36.17, 43.75	6, 7, 8	Switchable BW
ATSC/QAM	5.38, 6.0, 6.28	44.0	6	

On-Chip Regulator Specification

Parameter	Min	Typical	Max	Units
Output Voltage	1.7	1.8	1.9	V

Vbatt Input Voltage		2.3	2.8	3.6	V
Maximum Output Current			200		mA
Minimum Dropout Voltage			0.2		V
Ripple Rejection	at 1kHz		20		dBc
(regulator only)	at 100 kHz		28		dBc
	at 10 MHz		30		dBc
	at 1 GHz		5		dBc

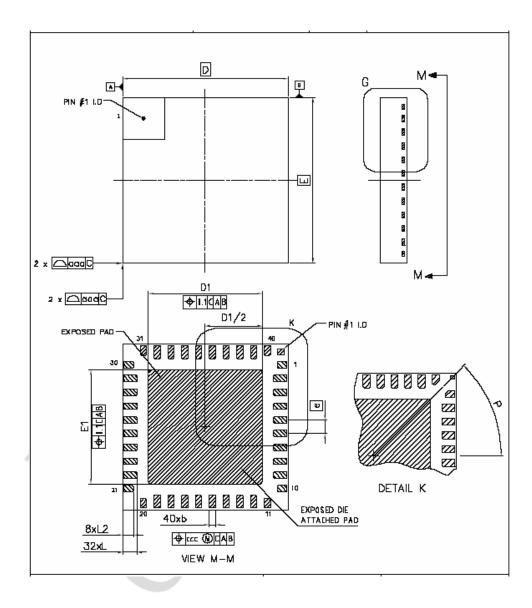
Sleep Modes

The chip is capable of going into different sleep modes, which are programmable through the I²C interface.

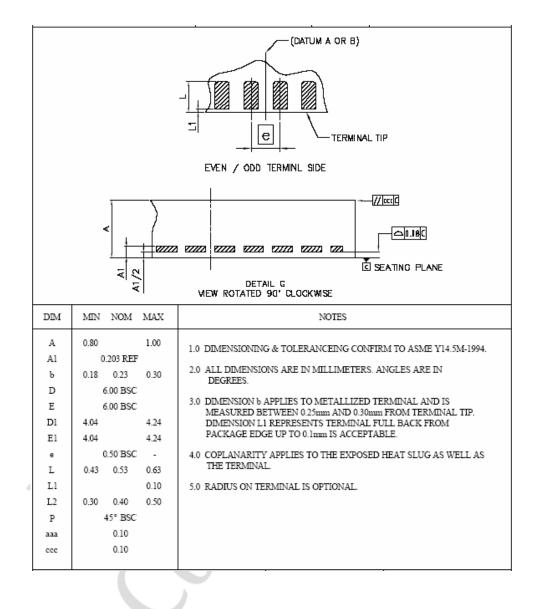
Mode	Current	Description	
Off	0	• Tuner supply is shut off, including I ² C interface and memory	
Deep-Sleep	50 µA	On-chip regulator in low-power mode	
		• I ² C interface is turned on and memory is maintained	
	< 3 µA	If on-chip regulator is bypassed:	
		• I ² C interface is turned on and memory is maintained	
Idle	4 mA	On-chip regulator and master bias are on	
		• I ² C interface is turned on and memory is maintained	
Tuning	32 mA	On-chip PLLs are on and tuned to the desired band	
		• I ² C interface is turned on and memory is maintained	

ESD Performance

All pins pass the ESD performance of 2000V using the Human Body Model (HBM), and of 200V using the Machine Model (MM).


Ordering Information

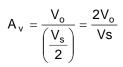
Part Number	Package Type	Description	
MxL5003S	QFN40	40-Pin QFN with no leads. Body size 6 x 6 x 0.9mm. Exposed backside paddle.	

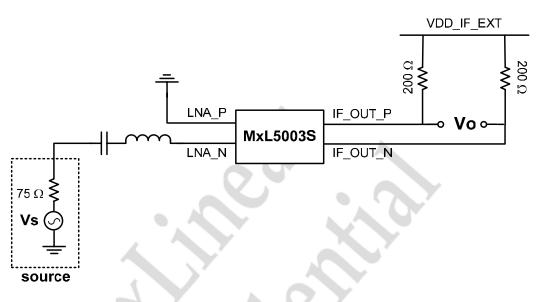


Packaging

QFN40 package dimensions: 6x6x0.9 mm³

Application Circuit


Please contact MaxLinear Applications for more information.



Appendix

1. Voltage Gain Definition

2. Desired Input Signal Range

The desired input signal range is dependent on modulation system. The data in this datasheet reflects a DVB-T input signal with 64QAM, Rate ¾, 8 MHz bandwidth, and guard interval of ¼. The sensitivity of the input signal range can be improved by 5 to 6 dB with an off-chip LNA.

3. Take Over Point

The parameters are specified at a take-over-point (TOP) of 25.2 dB.

Revision History

Rev 1.0, July 20, 2006

1. First release for MxL5003S

