

• 433.92 MHz RF transmitter module [3 terminal TH]
• 2x 2SC3356 [SOT-23] NPN transistor
• Large track around approx 2/3 of the board forms an aerial

Outlet units
• Info sticker:

Remote control socket
Model no: N19GN
Rated voltate: AC240V/50Hz
Rated power: 3120W
Frequency: 433.92 MHz

• 2x pushbuttons - ("Learn", "on/off")
• 4-way slide switch for timer setting - (off, 1h, 2h, 3h)
• Red status LED - indicates when appliance is switched on
• 3 pin 13A UK mains plug on back
• 3 pin 13A UK mains socket on front

Disassambly

5x "Y" type security screws - easily undone with a flat terminal-type screwdriver!

• 1x smaller pozi screw at top
• 4x small pozi screws fixing control board to upper half of case
• 2x loose button inserts and 1x slide switch insert in upper half of case

Main board

13A mains type fuse

• Relay "Songle SLA-24VDC-SL-A (30A 250VA)"
• Supressor cap "DF MPX/MKP 0.68uF"
• 78L05 [SMT] regulator

• 4x MT [SMT] diodes as bridge rectifier
• 1x MT [SMT] diode across relay coil
• LM358 [SOIC-8] op amp in receiver circuit
• 2x4 100mil socket to connect to control board

Control board

Elan EM78P153SNJ [SOIC-14] 8-bit microcontroller

• BL24C02 [SOIC-8 150mil] 2Kbit I2C serial EEPROM
• 4.0MHz resonator [2 terminal TH]
• 1x4 100mil extended headers to connect to main board

Space for additional 1x4 100mil connector with same pinout as main board connector at opposite
end of board, possibly a test connector?

Remote control
• Info sticker:

Remote control socket
Frequency: 433.92 MHz

• 9x pushbuttons - ("reset", "A on", "A off", "B on", "B off", "C on", "C off", "All on", "All
off")

• Red status LED - indicates when transmitting data
• Battery compartment underneath for 9v PP3 battery

4x pozi screws

• 4x smaller pozi screws fixing control board to posts on lower half of case
• 8x loose button inserts of various sizes in upper half of case

Elan EM78P153SNJ [SOIC-14] 8-bit microcontroller

• Red status LED
• 5v regulator [3 terminal TH] (note: the pinout indicates this is NOT a 7805-type device)
• PP3 9v battery clip connector
• PCB has unfilled component pads that would accomodate a SOIC-8 IC, possibly a serial

EEPROM?
• 3 pins connect control board to radio board underneath, these carry Gnd, +9v, and data

signal to transmit from MCU.
• The dotted yellow line annotated on the above image shows the data signal path from the

MCU to the transmitter circuit.

Radio board

433.92 MHz RF transmitter module [3 terminal TH]

• 2x 2SC3356 [SOT-23] NPN transistor
• Large track around approx 2/3 of the board forms an aerial.

Communication protocol
This system uses 1-way radio frequency communication between the remote control and the outlet
units, at a frequency of 433.92 MHz.

Decoding

By making a connection to the data line between the MCU and the radio transmitter circuit in the
remote control, I was able to sample the data being sent. The following is a section of these data
samples:

By examining this and several other sets of samples, I found that the protocol uses data packets
consisting of a 3.6ms start pulse, followed by a pattern of 89 pulses, each of 0.5ms duration. The
data is encoded in binary and represented by two different durations between these pulses - a 0.5ms
gap representing one state, and a 0.8ms gap representing another. I also noticed that the first 25 gaps
are always the same - 24 long gaps, followed by 1 short gap. This pattern, together with the start
pulse, are probably designed to enable the receiver to detect the start of a packet and prepare to
receive the data which follows.

The remaining 64 gaps encode the data, which appears to be obfuscated and/or encrypted in some
way, as pressing the same button on the remote control results in different patterns being sent. For
example, the following patterns were produced by pressing the "A on" button five times, followed
by the "A off" button five times (here "-" represents a long gap, and "x" represents short gap):

A on: -x--x--xxxx-x-x-xx-x-xxx-xx--x-x----x-xx-x---x-xxxxx--xx-xx-xxxx
 -x----xxxxx----xxx--xxx--x-xxx--------x---xxxx--xxx-x-x--xx--xx-
 --xxxxxxxx-xx-xxxx--x----x-x-xx-xxxxxx----xx-xx-xxx--x---xx-----
 --xxx-xxxx-x-x-xxx----x--x-x----xxxx-xx---xx----xx-xxxx--x-xx-x-
 --xx-xxxxx--xxxxx-xxxx---x--x-x-xxxx------x-x-x-xx-xx----x-x-x--

A off: --xx-x--xx--x-xxx-xxx----x---xx-xxx-xx----x--xx-xx-x-x-x-x-x----
 --xx----xx---x-xx-xx--x--x------xxx--xx---x-----xx--xxxx-x--x-x-
 --x-xx--x-xxxxxxx-x-xx----xxx-x-xxx--------xx-x-xx--x--x-x---x--
 --x-x---x-xxx--xx-x--xx---xx-x--xx-xx-x----x-x--xx----xx--xxxxx-
 --x--x--x-xx--xxx-x-------x-xxx-xx-x-x------xxx-x-xxxx-x--xxx---

By observing more data, I was able to observe patterns which appear to be counting in binary,
though not in a simple, sequential manner. By observing how these patterns were changing, I could
infer that these 64 gaps represented 8 octets, and as the first gaps were changing less than the later
gaps in each octet, this suggested the octets are transmitted MSB first, with the long pulses
representing binary zeros, and the short pulses representing binary ones. This allowed me to
transform the above patterns into binary, and then into a hexadecimal representation, the results of
which are shown below:

 X1 X2 X3 X4 Y1 Y2 Y3 Y4
A on: 49 ea d7 65 0b 45 f3 6f
 43 e1 ce 5c 02 3c ea 66
 3f db c8 56 fc 36 e4 60
 3b d5 c2 50 f6 30 de 5a
 37 cf bc 4a f0 2a d8 54

A off: 34 cb b8 46 ec 26 d5 50
 30 c5 b2 40 e6 20 cf 4a
 2c bf ac 3a e0 1a c9 44
 28 b9 a6 34 da 14 c3 3e
 24 b3 a0 2e d4 0e bd 38

Initial observations are that this does not appear to show any obvious pattern, other than a general
counting-down trend. However, you will notice that I have labeled each octet X1, X2, X3, X4, Y1,
Y2, Y3 Y4 respectively. The reason for this that I noticed that if you subtract each Y from each
corresponding X value modulo 256 (as an 8-bit MCU would do) you get the following 4 octets for
each of the above, which I have labeled Z1-Z4:

 (Zn = Xn - Yn)
 X1 X2 X3 X4 Y1 Y2 Y3 Y4 Z1 Z2 Z3 Z4
A on: 49 ea d7 65 0b 45 f3 6f 3e a5 e4 f6
 43 e1 ce 5c 02 3c ea 66 41 a5 e4 f6
 3f db c8 56 fc 36 e4 60 43 a5 e4 f6
 3b d5 c2 50 f6 30 de 5a 45 a5 e4 f6
 37 cf bc 4a f0 2a d8 54 47 a5 e4 f6

A off: 34 cb b8 46 ec 26 d5 50 48 a5 e3 f6
 30 c5 b2 40 e6 20 cf 4a 4a a5 e3 f6
 2c bf ac 3a e0 1a c9 44 4c a5 e3 f6
 28 b9 a6 34 da 14 c3 3e 4e a5 e3 f6
 24 b3 a0 2e d4 0e bd 38 50 a5 e3 f6

Now we can see a pattern emerging - the Z2 and Z4 values are the same for all packets, and the Z3
value changes according to the command. After some more investigations, I was able to determine
what each of these octets represents:

Octet Meaning

Z1

A counter, which is incremented by at least one for every packet sent. The purpose of this
seems to be to obfuscate the data, ensuring that different values are sent when the same
button is pressed repeatedly. Note that the outlet units seem to ignore this value, so it does
not prevent anyone recording and replaying data to re-send the command - the command
will still be accepted by the outlet unit even if the counter value is the same as the previous
command.
Note that the transmitter sometimes sends two or more commands in response to a single
button press, (possibly depending on how long the button is held down for?). This may
account for the sequence of Z1 values seen in the above example, as I had only captured the
first complete data packet for each button press.

Z2
The first part of a 16-bit identifier for the transmitter. This appears to be randomly generated
when power is first applied (the LED flashes to indicate this is happening). Disconnecting
the battery for an extended period of time will cause it to be reset.

Z3 The command being sent. Valid commands are as follows:

• 0x03 = Unit C OFF
• 0x04 = Unit C ON
• 0x13 = Unit D OFF
• 0x14 = Unit D ON
• 0x23 = All units OFF
• 0x24 = All units ON
• 0x63 = All units OFF
• 0x64 = Pulse all currently OFF units ON momentarily, then OFF again

• 0xe3 = Unit A OFF
• 0xe4 = Uint A ON
• 0xf3 = Unit B OFF
• 0xf4 = Unit B ON

In other words, the lower nybble seems to determine the ON or OFF state, and the upper
nybble determines the unit(s) to address. No other combinations apart from the above were
found to be valid.
Notice that there are commands to allow 4 units with the same ID to be switched - the
commands to switch unit D are generated by shorting the hidden button pads on the remote
control PCB.
No buttons generate the 0x63 and 0x64 commands, this is undocumented functionality,
although I'm not really sure how useful this is!

Z4 The second part of a 16-bit identifier for the transmitter (see Z2).

Encoding

The next challenge was to be able to convert my own data (Z1-Z4) into an encoded representation
(X1-X4,Y1-Y4) that would be accepted by the outlet units. There appeared to be some additional
relationship between the Z data and the X,Y representation that had to be satisfied in order for the
outlet units to accept the data packets as being valid.

After spending a while looking at patterns in the differences between subsequent bytes, and trying
some packets to see which would be accepted by the outlet units, I came up with the following code
for encoding Z data into X,Y for transmission:

Y1 = 0x61 + (4 * Z2) - (3 * Z1) + (2 * Z4) + Z3
X1 = Z1 + Y1
Y2 = Y1 - 0xBC + Z4
X2 = Z2 + Y2
X3 = X2 - 0x13
Y3 = X3 - Z3
X4 = X3 - 0x68 + Z4
Y4 = X4 - Z4

(Note that these are all unsigned byte operations, i.e. mod 256)

The above allows us to synthesise any ID and command combination, which can then be sent to the
transmitter circuit. As the protocol uses a 16-bit identifier, and there are commands to control up to
four units with the same identifier, this gives us the possibility of controlling up to 2^16 * 4 =
262144 individual units!

	Outlet units
	Disassambly
	Main board
	Control board

	Remote control
	Radio board

	Communication protocol
	Decoding
	Encoding

