

GENERAL DESCRIPTION

OB2362 is a high performance flyback adaptive multi-mode(CCM/QR) PWM controller, optimized to achieve high efficiency and low standby power with effective system cost.

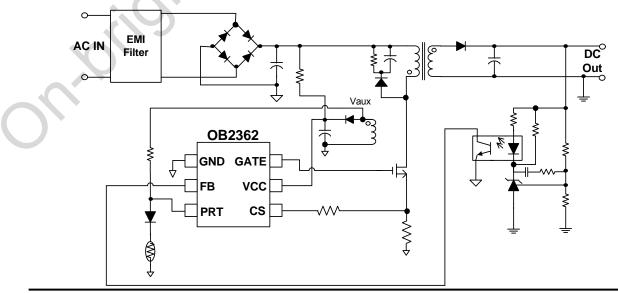
At heavy load, the IC operates in fixed frequency(65kHz) CCM mode in the low line input voltage. At medium load, it operates in QR mode, at light load ,it operates in green mode with valley skip, and at no load the IC operates in extended 'burst mode' to minimize switching loss. Lower standby power and higher conversion efficiency is thus achieved.

VCC low startup current and low operating current contribute to a reliable power on startup and low standby design with OB2362.

OB2362 offers comprehensive protection coverage with auto-recovery including Cycle-by-Cycle current limiting (OCP), over load protection (OLP), and VCC under voltage lockout (UVLO). It also provides the protections with latched shut down including over temperature protection (OTP), and over voltage protection (OVP). Excellent EMI performance is achieved with On-Bright proprietary frequency shuffling technique.

The tone energy at below 25KHz is minimized in the design and audio noise is eliminated during operation.

OB2362 is offered in SOT23-6 package.


APPLICATIONS

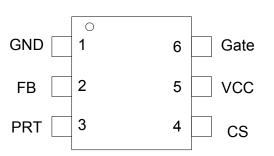
Offline AC/DC flyback converter for

- Power Adapter
- Set-Top Box Power Supplier
- Open-frame SMPS

FEATURES

- Power on soft start reducing MOSFET Vds stress
- Multi-Mode Operation CCM @ Heavy Load and Low Line Quasi-Resonant operation @ Medium Load Green mode with valley skip @ Light Load Burst Mode @ No Load
- Frequency shuffling for EMI
- Extended burst mode control for improved efficiency and low standby power design
- Audio noise free operation
- Comprehensive protection coverage
 - VCC Under Voltage Lockout with hysteresis (UVLO)
 - VCC Over Voltage Protection (VCC OVP)
 - Cycle-by-cycle over current threshold setting for constant output power limiting over universal input voltage range
 - Over Load Protection (OLP) with autorecovery
 - External (if NTC resistor is connected at PRT pin)or internal Over Temperature Protection (OTP) with latched shut down
 - Output Over Voltage Protection(Output OVP) with latched shut down, and the OVP triggered voltage can be adjusted by the resistor connected between auxiliary winding and PRT pin
 - Output diode short protection with autorecovery

©On-Bright Electronics


Preliminary Datasheet OB_DOC_DS_236200

TYPICAL APPLICATION

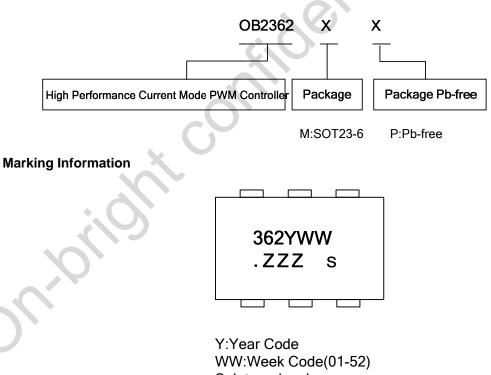
GENERAL INFORMATION

Pin Configuration

Ordering Information

Part Number	Description
OB2362MP	SOT23-6, Pb-free in T&R

Package Dissipation Rating				
Package RθJA(°C/W)				
SOT23-6	200			


Recommended operating condition

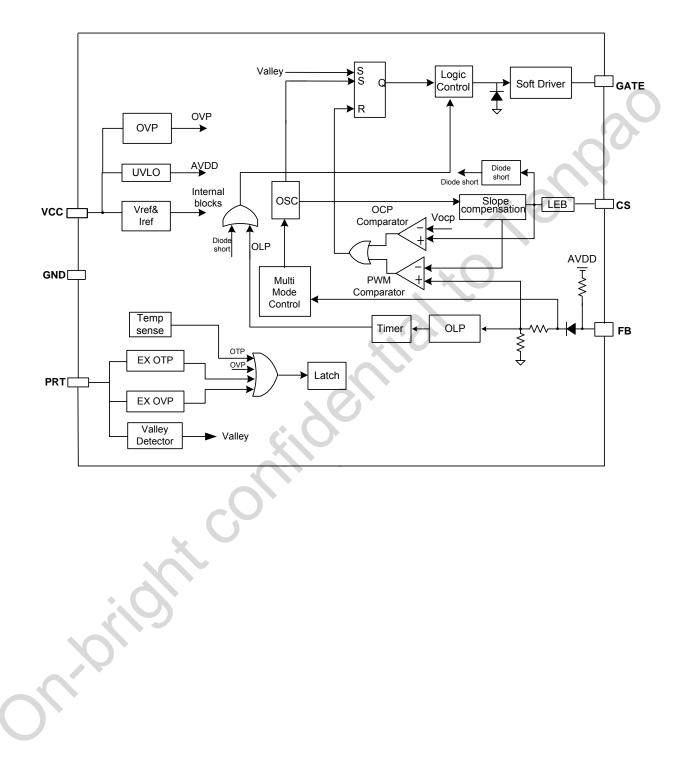
Symbol	Parameter	Range
VCC	VCC Supply Voltage	12 to 26V

Absolute Maximum Ratings

Parameter	Value
VCC DC Supply Voltage	V _{OVP} -1V
FB Input Voltage	-0.3 to 7V
CS Input Voltage	-0.3 to 7V
PRT Input Voltage	-0.3 to 7V
Min/Max Operating Junction Temperature TJ	-40 to 150 °C
Operating Ambient Temperature T_A	-40 to 85 ℃
Min/Max Storage Temperature Tstg	-55 to 150 ℃
Lead Temperature (Soldering, 10secs)	260 ℃

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

S: Internal code ZZZ: Lot code


TERMINAL ASSIGNMENTS

Pin Name	I/O	Description
VCC	Р	Power Supply
CS	I	Current sense input
Gate	0	Totem-pole gate driver output for power MOSFET
GND	Р	Ground
PRT	I	Multiple functions pin. Connecting a NTC resistor to ground for OTP detection. Connecting a resistor from Vaux can adjust OVP trigger voltage and detect transformer core demagnetization. If both OTP and OVP are needed, a diode should be connected between PRT pin and the NTC resistor.
FB	I	Feedback input pin. The PWM duty cycle is determined by voltage level into this pin and the current-sense signal at Pin CS.
		shi

©On-Bright Electronics

FUNCTIONAL BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

$(T_A = 25^{\circ}C, VCC = 18V, unless otherwise noted)$

Symbol	Parameter	Test Conditions	Min	Typ.	Max	Unit
Supply Voltage (VD	D)					
Istartup	VCC=UVLO(OFF)-1V,			2	10	uA
I_VCC_Operation	Operation Current	VDD=18V,CS=4V, FB=3.5V,measure I(VCC)		2.5	3	mA
I_VCC_Burst	Burst Current	CS=0V,FB=0.5V, measure I(VCC)		0.6	0.7	mA
UVLO(ON)	VCC Under Voltage Lockout Enter		6	7	8	V
UVLO(OFF)	VCC Under Voltage Lockout Exit (Recovery)		19	21	23	V
Vpull-up	Pull-up PMOS active			10		V
OVP	VCC Over Voltage Protection threshold voltage	FB=3V,CS=0V. Slowly ramp VCC, until no gate switching.	26	27	28	V
Vlatch_release	Latch release voltage			5		V
Feedback Input Sec	ction(FB Pin)	X				•
V _{FB} Open	V _{FB} Open Loop Voltage			5.1		V
Avcs	PWM input gain ΔVFB/ΔVCS			3.5		V/V
	Max duty cycle @ VCC=18V,VFB=3V,VCS=0V	2	75	78	81	%
I _{FB} _Short				0.3		mA
V _{TH} OLP Open loop protection, FB Threshold Voltage				4.4		V
Td_OLP	Open loop protection, Debounce Time			60		ms
Z _{FB} _IN	Input Impedance			16		KΩ
Current Sense Inpu	it(CS Pin)					
SST_CS	Soft start time for CS peak			4		ms
T_blanking	Leading edge blanking time			300		ns
Td_OC	d_OC Over Current Detection and Control Delay			90		ns
V _{TH} OC	Internal Current Limiting Threshold Voltage with zero duty cycle		0.43	0.45	0.47	V
V _{TH} _OC_Clamp	OCP CS voltage clamper			0.72		V
PRT pin						
IRT	Output current for external OTP detection		95	100	105	uA
VOTP	Threshold voltage for external OTP		0.95	1	1.05	V
loutput_ovp	Current threshold for adjustable output OVP			180		uA

In-chip OTP OTP exit 150 OSC Normal Oscillation Frequency VDD=18V,FB=3V, CS=0V 60 65 70 Af_OSC Frequency jittering +/-6 +/-6 +/-6 +/-6 F_shuffling Shuffling frequency 32 a2 a4Temp 1 1 Af_VCC Frequency Voltage Stability 1 1 1 1 Af_VCC Frequency Voltage Stability 1 1 1 1 F_Burst Burst Mode Switch Frequency 25 Gate driver 7 VOL Output low level @ VDD=18V, lo=20mA 1 1 VOH Lo=20mA 1 1 V_clamping Output clamp voltage 12 1 T_r @ CL=10000F 100 30 1		Output OVP debounce time			5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	In-chip OTP		1				_
Oscillator VDD=18V,FB=3V, CS=0V 60 65 70 Af_OSC Frequency jittering +/-6							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					120		
PoseNormal Oscillation PrequencyCS=0V606370 Δf_OSC Frequency jittering+/-6F_shufflingShuffling frequency32 Δf_Temp Frequency Temperature1 $Stability$ 1 Δf_VCC Frequency Voltage Stability1F_BurstBurst Mode Switch Frequency25Gate driverVOLOutput low level @ VDD=18V, lo=5mA1VOHOutput high level @ VCC=18V, lo=20mA6V_clampingOutput clamp voltage12T_rOutput rising time 1.2V ~ 10.8V @ CL=1000pF100T_fOutput falling time 10.8V ~ 1.2V @ CL=1000pF30	Oscillator						_
F_shufflingShuffling frequency32 Δf_Temp FrequencyTemperature1 Δf_VCC Frequency Voltage Stability1F_BurstBurst Mode Switch Frequency25Gate driverVOLOutput low level @ VDD=18V, Io=5mAVOHOutput high level @ VCC=18V, Io=20mA6V_clampingOutput clamp voltage12T_rOutput rising time 1.2V ~ 10.8V @ CL=1000pF100T_fOutput falling time 10.8V ~ 1.2V30		Normal Oscillation Frequency		60		70	
$\Delta f_{-}Temp$ Frequency StabilityTemperature I1 $\Delta f_{-}VCC$ Frequency Voltage Stability1F_BurstBurst Mode Switch Frequency25Gate driverVOLOutput low level @ VDD=18V, Io=5mA1VOHOutput high level @ VCC=18V, Io=20mA6V_clampingOutput clamp voltage12T_rOutput rising time 1.2V ~ 10.8V @ CL=1000pF100T_fOutput falling time 10.8V ~ 1.2V @ CL=1000pF30							
AI_remp Stability 1 Af_VCC Frequency Voltage Stability 1 F_Burst Burst Mode Switch Frequency 25 Gate driver VOL Output low level @ VDD=18V, lo=5mA 1 VOH Output high level @ VCC=18V, lo=20mA 6 1 V_clamping Output clamp voltage 12 1 T_r Output rising time 1.2V ~ 10.8V @ CL=1000pF 100 30 T_f Output falling time 10.8V ~ 1.2V @ CL=1000pF 30 30	F_shuffling				32		Γ.
F_Burst Burst Mode Switch Frequency 25 Gate driver Output low level @ VDD=18V, lo=5mA 1 VOL Output high level @ VCC=18V, lo=20mA 6 1 V_clamping Output clamp voltage 12 1 T_r Output rising time 1.2V ~ 10.8V @ CL=1000pF 100 100 T_f Output falling time 10.8V ~ 1.2V @ CL=1000pF 30 30	∆f_Temp	Stability			1		
Gate driver Output low level @ VDD=18V, lo=5mA 1 VOH Output high level @ VCC=18V, lo=20mA 6 1 V_clamping Output clamp voltage 12 1 T_r Output rising time 1.2V ~ 10.8V @ CL=1000pF 100 100 T_f Output falling time 10.8V ~ 1.2V @ CL=1000pF 30 30							
VOL Output low level @ VDD=18V, lo=5mA 1 VOH Output high level @ VCC=18V, lo=20mA 6 1 V_clamping Output clamp voltage 12 12 T_r Output rising time 1.2V ~ 10.8V @ CL=1000pF 100 100 T_f Output falling time 10.8V ~ 1.2V @ CL=1000pF 30 30	F_Burst	Burst Mode Switch Frequency			25		
VOL Io=5mA 1 VOH Output high level @ VCC=18V, Io=20mA 6 1 V_clamping Output clamp voltage 12 12 T_r Output rising time 1.2V ~ 10.8V @ CL=1000pF 100 100 T_f Output falling time 10.8V ~ 1.2V @ CL=1000pF 30 30	Gate driver					·	
VOR Io=20mA 6 V_clamping Output clamp voltage 12 T_r Output rising time 1.2V ~ 10.8V @ CL=1000pF 100 T_f Output falling time 10.8V ~ 1.2V @ CL=1000pF 30	VOL					1	
	VOH			6			
I_r @ CL=1000pF 100 T_f Output falling time 10.8V ~ 1.2V 30 @ CL=1000pF 30	V_clamping	Output clamp voltage			12		
1_1 @ CL=1000pF	T_r				100		
	Τf				30		
		XC					
	jor i	0					

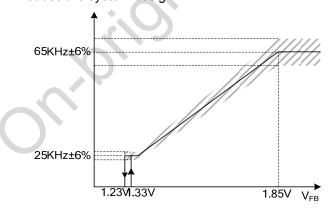
OPERATION DESCRIPTION

OB2362 is a highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter applications. The 'extended burst mode' control greatly reduces the standby power consumption and helps the design easier to meet the international power conservation requirements.

• Startup Current and Start up Control

Startup current of OB2362 is designed to be very low so that VCC could be charged up above UVLO threshold level and device starts up quickly. A large value startup resistor can therefore be used to minimize the power loss yet achieve a reliable startup in application.

• Operating Current


The Operating current of OB2362 is low at 2.5mA (typical). Good efficiency is achieved with OB2281 low operation current together with the 'extended burst mode' control features.

• Soft Start

OB2362 features an internal 2ms (typical) soft start to soften the electrical stress occurring in the power supply during startup. It is activated during the power on sequence. As soon as VCC reaches UVLO(OFF), the CS peak voltage is gradually increased from 0.05V to the maximum level. Every restart up is followed by a soft start.

• Frequency shuffling for EMI improvement

The frequency shuffling (switching frequency modulation) is implemented in OB2362. The oscillation frequency is modulated so that the tone energy is spread out. The spread spectrum minimizes the conduction band EMI and therefore eases the system design.

• Multi Mode Operation for High Efficiency OB2362 is a multi mode QR/CCM controller. The controller changes the mode of operation according to the FB pin voltage. At the normal

©On-Bright Electronics

operating condition, the IC operates in traditional PWM mode.

As the output load current is decreased, the IC enter into green mode smoothly from the PWM mode. In this mode, the switching frequency will start to linearly decrease from 65KHz to 25KHz, meanwhile the valley turn on can be realized by monitoring the voltage activity on auxiliary windings through the PRT pin. So the switching loss is minimized and the high conversion efficiency can be achieved.

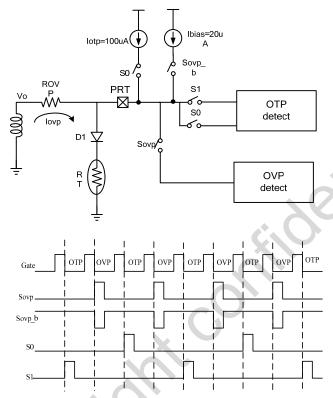
At light load or no load condition, most of the power dissipation in a switching mode power supply is from switching loss of the MOSFET, the core loss of the transformer and the loss of the snubber circuit. The magnitude of power loss is in proportion to the switching frequency. Lower switching frequency leads to the reduction on the power loss and thus conserves the energy.

The switching frequency is internally adjusted at no load or light load condition. The switch frequency reduces at light/no load condition to improve the conversion efficiency. At light load or no load condition, the FB input drops below Vref_burst_L (the threshold enter burst mode) and device enters Burst Mode control. The Gate drive output switches when FB input rises back to Vref_burst_H (the threshold exit burst mode). Otherwise the gate drive remains at off state to minimize the switching loss and reduces the standby power consumption to the greatest extend.

• Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in OB2362 current mode PWM control. The switch current is detected by a sense resistor into the CS pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial internal power MOSFET on state due to snubber diode reverse recovery and surge gate current of power MOSFET. The current limiting comparator is disabled and cannot turn off the internal power MOSFET during the blanking period. The PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

• Internal Synchronized Slope Compensation Built-in slope compensation circuit adds voltage ramp into the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.



• Driver

The power MOSFET is driven by a dedicated gate driver for power switch control. Too weak the gate driver strength results in higher conduction and switch loss of MOSFET while too strong gate driver strength results the compromise of EMI.

A good tradeoff is achieved through the built-in totem pole gate design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme.

• Dual Function of External OTP and Output OVP

On-Bright proprietary dual function of external OTP and output OVP provides feasible and accurate detection of external OTP through NTC resistor and output OVP. The dual function is realized through time-division technology as shown in the figure.

For external OTP detection, when switch control signal S1= "1", about 20uA (typical) current flows out from PRT pin. When switch control signal S0= "1", about 120uA (typical) current flows out from PRT pin. The PRT pin voltage difference \triangle Votp at phase S0 and S1 phase is equal to

$$\Delta V_{OTP} = \frac{RT \cdot ROVP}{ROVP + RT} \cdot 100uA \cdot$$

When \triangle Votp<1V , external OTP latch protection is triggered after 30 Gate cycles debounce.

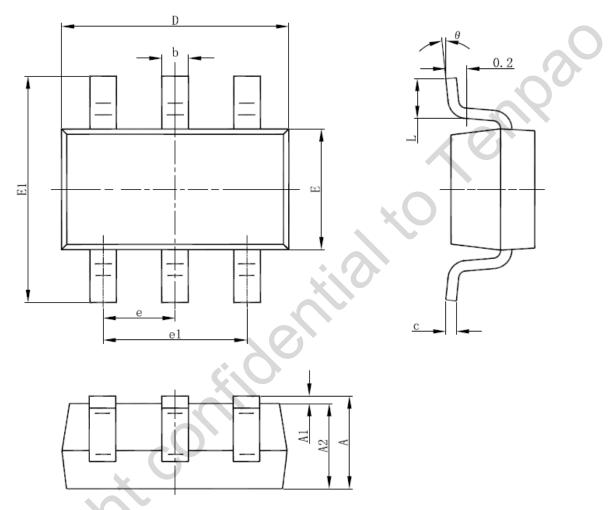
For output OVP detection, when Sovp= "1", lovp is equal to Vo/ROVP. If lovp is larger than 180uA (typical), OVP latch protection is triggered after 5 Gate cycles debounce. By selecting proper Rovp resistance, output OVP level can be programmed.

• Protection Controls

Good power supply system reliability is achieved with auto-recovery protection features including Cycle-by-Cycle current limiting (OCP), and Under Voltage Lockout on VDD (UVLO), and latched shutdown features including Over Temperature Protection (OTP), VCC and output Over Voltage Protection (OVP).

With On-Bright proprietary technology, the OCP is line voltage compensated to achieve constant output power limit over the universal input voltage range.

At overload condition when FB input voltage exceeds power limit threshold value for more than Td_OLP, control circuit reacts to shut down the converter. It restarts when VDD voltage drops below UVLO limit. For protection with latched shut down mode, control circuit shuts down (latch) the power MOSFET when an over temperature condition or over voltage condition is detected until VDD drops below 5V (typical) (Latch release voltage), and the device enters power on restart-up sequence thereafter.


• Pin Floating and Short Protection

OB2362 provides PIN floating protection for all the pins and pin short protection for adjacent pins. In the cases when a pin is floating or two adjacent pins are shorted, Gate switching is disabled.

PACKAGE MECHANICAL DATA

SOT-23-6L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In	Dimensions In Millimeters		In Inches
Symbol	Min	Max	Min	Max
А	1.000	1.450	0.039	0.057
A1	0.000	0.150	0.000	0.006
A2	0.900	1.300	0.035	0.051
b	0.300	0.500	0.012	0.020
С	0.080	0.220	0.003	0.009
D	2.800	3.020	0.110	0.119
E	1.500	1.726	0.059	0.068
E1	2.600	3.000	0.102	0.118
e 0.950 (E		BSC)	0.037 (BSC)
e1	1.800	2.000	0.071	0.079
Ĺ	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

©On-Bright Electronics

IMPORTANT NOTICE

RIGHT TO MAKE CHANGES

On-Bright Electronics Corp. reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

WARRANTY INFORMATION

On-Bright Electronics Corp. warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with its standard warranty. Testing and other quality control techniques are used to the extent it deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

On-Bright Electronics Corp. assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using On-Bright's components, data sheet and application notes. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

LIFE SUPPORT

On-Bright Electronics Corp.'s products are not designed to be used as components in devices intended to support or sustain human life. On-bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

On-Bright Electronics Corp.'s products are not designed for use in military applications. On-Bright Electronics Corp. will not be held liable for any damages or claims resulting from the use of its products in military applications.